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CHAPTER 1 

Introduction 

I 
I 

Programmable Logic Arrays (PLA's) are important subsystems in digital! design of 

integrated circuits [FlM75, LBH75]. A PLA provides a simple and regular layo t strategy 

for Boolean equations expressed in two-level canonical form, and is usually use to imple-

ment .. random" logic (random in the sense that the designer sees no regular st ucture in 

the Boolean equations). Typical examples are the control logic for a reduced-i struction 

set computer. or the control logic for a microcode engine. With the addition of atches for 

feedback, PLA's are also often used for the combinational logic in a finite-stat machine. 

The optimization of PLA's is a useful application of Computer-Aided Desi n to the 

automatic synthesis of custom VLSI designs. 

Techniques for optimizing the structure of a PLA are becoming well unders ood. The 

optimization goals are to minimize the area occupied by the PLA, and to minimize the 

delay through the PLA. The regular structure of a PLA means that the area of the PLA is 

simply proportional to the number of product terms in the array, and, to a first-order 

approximation, the delay through the PLA is also proportional to the number of product 

terms (i.e .. independent of the structure of each product term). Efficient algorithms can be 

developed to minimize the number of product terms in the array. A complete strategy for 

the design of a PLA macro-cell involves: ( 1) logic optimization of the PLA logic equations 

including input variable assignment and output phase assignment [BMH84, Saf84b]: (2) 

optimization of the PLA layout through folding and partitioning [DeS83, HNS8~]: and (3) 

generation of the mask geometries implementing the PLA [Mah84]. 

This report is concerned with the logic optimization of PLA equations, and i particu-

lar, with the extension of the Espresso-11 algorithms [BMH84] to the case of multiple-

valued logic functions. Recent advances in multiple-output minimization of Boo ean equa-

§ 1 1 



§ 1 2 

' 

tions have produced algorithms able to minimize large Boolean functions. Thi~ is impor-
1 

tant for VLSI designs where a PLA can have more than 50 inputs and 50 outputf· Boolean 

minimization is perhaps the most important logic optimization procedure for PL~·s. but it 

is not the only one. Other potential optimizations that change the form of the iogic equa

tions include using multiple-bit decoders on the inputs and choosing the most +propriate 

phase for each output. A multiple-valued minimization tool is an important p~rt of each 

of these optimization procedures. 

Espresso-11 is a collection of algorithms for the minimization of two-level binary-

valued switching functions [BMH84]. Research on the Espresso algorithms began in the 

summer of 1981 at the IBM T. J. Watson Research Center. A program implementing these 

algorithms was written in APL in the summer of 1982. and a C language version (called 

Espresso-IIC) was completed in January of 1984. The research culminated in the publica-

tion of the monograph Logic Minimization Algorithms for VLSI Synthesis [BMH84] in 

1984. The public domain program Espresso-IIC was made available from the University 

of California simultaneously with the publication of the monograph. 

Some early ideas on the problem of minimizing multiple-valued Boolean functions 

were presented in Chapter 5 of the monograph. \1ultlple·valued logic has many uses in 

optimizing structures built from binary-valued logic. For example. it has been shown that 

the input-encoding problem can be solved by treating It as a multiple-valued mimimization 

problem. This can be applied to the optimal state-assignment problem (for many types of 

finite-state machines) [De83, DeB84] or to optimal assignment of opcodes in a processor so 

as to minimize the instruction decode logic [De84]. Multiple-valued logic functions can 

also be used to represent and minimize PLA's with multiple-bit decoders [FlM75, Sas84b]. 

With a simple transformation and the addition of an appropriate don't-care set, a 

multiple-valued minimization problem can be solved with any binary-valued minimizer 

[BMH84, Chapter 5]. However. this technique fails to exploit any knowledge of fhe struc

ture of the multiple-valued minimization problem, and hence can be inefficient. for exam-

ple, the don't-care set can become very large. and the number of binary variab1es needed 
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equals the sum of the number of values Cfor all variables) in the original problefn. Hence, 
I 
I 

even Espresso-IIC was unable to minimize the transformed function resulting lfrom per-
i 

forming a state-assignment on a dense 93-state machine. Ot should be noted tha~ the state 

machine had more than 3200 transitions and the transformed function had overl100 input 

variables. over 100 output functions, and there were more than 5000 don't-cte terms.) 

Hence, it was hoped that a multiple-valued minimizer would be able to solve I this large 

problem. 

Also. it is known that the multiple-output minimization problem for PLA optimiza-

tion is a special case of multiple-valued minimization. Therefore, it was ho ed that a 

better understanding of the effect of the output part on the multiple-output mi imization 

problem would result from working directly with the multiple-valued variables. For 

these reasons. 1 became interested in extending the Espresso-11 algorithms to the more gen-

eral framework of multiple-valued logic functions. 

In this report I present the extension of Espresso-11 to multiple-valued logic func-

tions. and I report my experience with the program Espresso-MY that implements these 

extensions. Espresso-MY was found to be more efficient than Espresso-IIC due to its more 

uniform treatment of the output part. and hence has replaced Espresso-IIC even for 

minimization of binary-valued multiple-output functions. I also demonstrate how the 

Espresso-11 algorithms can be extended to solve the Boolean minimization problem exactly. 

This exact algorithm relies on a new algorithm for the minimum cover problem which has 

proven to be efficient for solving large. cyclic covering problems. I present results for a 

large test set of PLA examples for several different minimization algorithms including the 

heuristic and exact modes of Espresso-MY. The PLA examples in the test set are also 

graded with respect to difficulty to organize the comparisons among competing algorithms. 

Finally. I report on the successful multiple-valued minimization of the large stat~ machine 
I 

mentioned above. I 

I 
In particular. the basic definitions of multiple-valued logic functions are Prfsented in 

Chapter 2 along with the necessary extensions to the fundamental concepts of Espresso-11 
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for dealing with multiple-valued logic functions. The key concepts in this chapter are the 

extension of the Shannon Cofactor and unate functions to multiple-valued logic (unctions. 

Background on logic optimization of PLA"s. including logic minimization. input-

variable assignment for two-bit decoders. and output phase assignment, is pr~sented in 

Chapter 3. This provides motivation for interest in multiple-valued logic minim_ization as 

well as an introduction to the exact minimization problem. 

I 
The algorithms used for heuristic minimization are described in Chapter 4. From an 

outside view, the algorithms appear similar to the original Espresso-11 algorithms. How-

ever. the use of multiple-valued logic simplifies the description of many of the algorithms. 

and hence. the algorithms are explained in detail. 

The exact minimization problem is considered in Chapter 5. I show how the algo-

rithms used by Espresso-MY can be used to create a minimization algorithm which pro-

vides the minimum solution to the minimization problem. In particular, a new algorithm 

for finding the minimum cover of the prime implicant table is presented that has success-

fully completed the covering for several functions that have appeared in the literature 

without a solution. 

Experimental results with the C language version of the program Espresso-MY are 

given in Chapter 6. First. results evaluating the difficulty of the PLA test set are 

presented. For those examples where the exact minimizer is able to generate a solution. 

Espresso-MY is much faster and is produces solutions which are very close to the exact 

minimum. When minimizing multiple-valued functions. Espresso-MY is much more 

efficient than using a two-valued logic minimizer with an appropriate don't-care set. Also, 

Espresso-MY is more efficient than Espresso-IIC due to the uniform treatment of the out-

put part. 

Appendix A contains user documentation for the program Espresso-MY. including 

the command line options and file formats. 
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Appendix B contains results for the 145 PLA's in the Berkeley PLA: Test Set. 

Optimum results are reported for over 100 of the PLA's, and the best known solutions are 
I 

reported for the remaining problems. The examples where the minimum solu~ion is not 

known can be be viewed as a challenge to any Boolean minimization program ~o find the 

minimum solution. or to find a solution better than that reported by Espresso-M~. 





CHAPTER 2 

Basic Definitions 

The purpose of this chapter is to review the definitions that will be used in dealing 

with multiple-valued input binary-valued output functions. and to define the notions of 

Shannon cofactor. weakly-unate and strongly-unate for these types of functions. There is a 

wealth of data in the literature regarding these types of functions. In particula . I follow 

the notation and terminology of Sasao [Sas81. Sas83. Sas84b] for multiple-va 

tions. Chapters 2 and 3 of Logic Minimization Algorithms for VLSI Synthesis [B H84] are 

valuable references for these definitions in the special case of binary-valued multiple-

output functions. 

2.1. Multiple-Valued Functions 

Let p; fori= 1 · · · n be positive integers representing the number of values for each 

of n variables. Define the set P; = { 0, · · ·. p; -1 } for i = 1 · · · n which represents the 

P; values that variable i may assume. and define B = { 0.1.* } which represents the value 

of the function. A multiple-valued input, binary-valued output func::tion. f . 

(hereafter known as a multiple-valued function) is a mapping 

The function is said to have n multiple-valued inputs. and variable i is said to take 

on one of P; possible values. 

Each element in the domain of the function is called a minterm of the function. 

An enumeration of all minterms with the value of the function is called a truth 

table. 

The value* E B will represent a minterm for which the function value is 1llowed to 

be either 0 or 1. Hence. we allow functions which are incompletely specified. . 

§ 2.1 6 
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An n -input. m -output switching function can be represented by a multi~le-valued 
I 
I 

function of n + 1 variables where Pi= 2 for i = 1 · · · n. and Pn +l = m. This spe1ial case is 

called a multiple-output function. It is easily proven that the Boolean mitimization 

problem for multiple-output functions is equivalent to the minimization of a [multiple-

valued function of this form [Sas78, Theorem 4.1]. I 

As an example of a multiple-valued function, I define a function of three variables 

with the first variable assuming three values (p 1 = 3). the second variable assuming two 

values (p 2 = 2). and the third variable assuming three values (p 3 = 3). The function is 

defined by the following truth table: 

X1 Xz x3 value 
0 0 0 1 
0 0 1 1 
0 0 2 0 
0 1 0 1 
0 1 1 0 
0 1 2 1 
1 0 0 0 
1 0 1 1 
1 0 2 1 
1 1 0 1 
1 1 1 1 
1 1 2 0 
2 0 0 * 
2 0 1 * 
2 0 2 0 
2 1 0 1 
2 1 1 * 
2 1 2 0 

::'\lote that some of the function values are * indicating that the function value may be 

either 0 or 1 for these minterms. 

s 
Let X; be a variable taking a value from the set P;. and let S; be a subset of P;. X;' 

represents the Boolean function 

s; _ 10 if X; l S; 
X, - 1 if XES 

l l 

X
s, 
, is called a literal of variable X;. If S; = 0. then the value of the literal is always 0, 

and the literal is called empty. If S; =P;. then the value of the literal is always 1. and 



§ 2.1 8 

the literal is called full. 

In the example. PI= { 0.1.2 } . and if X I= 1 then X II 0 ·2 1 = 0. and X II I 1 =11. 

S -S S i 
The complement of the literal X; 1 (written X; 1

) is the literal X; 1
• The c1mplement 

of a hteral evaluates to 0 when the literal evaluates to 1, and vice-ver<a. ! 

A product term (sometimes simply a term) is a Boolean product (or I AND) of 
i 
' 

literals. If a product term evaluates to 1 for a given minterm. the product ten~ is said to 

contain the minterm. If a literal in a product term is full. the product term does not 

depend on that variable. Without loss of generality. a product term consists of the 

Boolean AND of a literal for each variable. 

If a literal in a product term is empty, the product term contains no min terms. and is 

called the null product term (written 0). If all literals in a product term are full. the 

product term contains all minterms. and is called the universal product term. 

A sum-of-products (also called a cover) is a Boolean sum (or OR) of product terms. 

If any product term in the sum-of-products evaluates to 1 for a given minterm. then the 

sum-of-products is said to contain the minterm. 

The set Xon (called the ON-set) is the set of minterms for which the function value 

is 1 (i.e .. X on =I -I( 1) ). Likewise, the set X01 1 (called the OFF-set) is the set of min

terms for which the function value is 0 (i.e .. Xal 1 =I - 1(0)). and Xdc (called the DC-set) 

is the set of minterms for which the function value is unspecified (i.e .. Xdc =! - 1(* )). 

An algebraic expression for I is a Boolean expression (written using Boolean sums 

and Boolean products of literals) which evaluates to 1 for all minterms of the ON-set. 

evaluates to 0 for all minterms of the OFF-set. and evaluates to either 0 or 1 for all min-

terms of the DC-set. 

Proposition 2.1: An algebraic expression for I can always be written in sum-ofi-products 

form. 
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Likewise, it is possible to define a sum term as a Boolean sum of literals, and a 

product-of-sums as a Boolean product of sum terms. However. we restrict ourl attention 

to sum-of-product forms because of the next proposition: 
i 

Proposition 2.2: The minimal product-of-sums form for a function f can *e derived 
' 

from the minimal sum-of-products form for Xof 1 . 

An implicant of a function f is a product term which does not contain ant minterm 
i 

in the OFF-set of the function. i 

A prime implicant of a function f i' an implicant whkh is contained bt no othe' 

implicant of the function. 

An essential prime implicant is a prime implicant which contains some minterm 

not contained by any other implicant. 

In the example, X 1
1 0 1 X 2

1 0·1 1 X 31 0 ·1 1 is a product term (which is not an implicant of 

the function). and a sum-of-products expression for the function is: 

X 
1
1 o I X 

2
1 1 I X 

3
1 o.2 I U X 

1
1 1 I X 

2
1 o I X 

3
1 1.2 I U 

X 
1
1 o l X 

2
1 o I X 

3
1 0.1 I U X 

1
1 1.2 l X 

2
1 1 I X 

3
1 0.1 I 

2.2. Operations on Product Terms and Covers 

s s 
In the definitions which follow. S=X 1

1X 2
2 

represent product terms. and F and G will represent sum-of-product expressions. 

The volume of a product term S ( vol (S) ) is the number of min terms which the 

n 

product term contains. (i.e .. II IS; I ). S is said to be larger than T if vol (S) > vol (T ). 
i = 1 

A product term S is said to contain a product term T (T ~ S) if T; ~ S; for all 

= 1 · · · n. If. in addition, S -:;t.T. then S is said to strictly contain T (T CS ). S 

(strictly) contains T if S (strictly) contains all of the min terms that T contains. 1 

The complement of a product termS (S) (computed using De Morgan's L~w) is the 
I 

n -S 
sum-of-products U X;;. 

i = 1 
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The intersection of product terms S and T (S (l T) is the pro<jluct term 

s nr s nr s nr i 
X 1 1 I X 2 

2 2 
... Xn n n which is the largest product term contained in both! s and T. 

' 

If S; (l T; = 0 for some i . then S (l T = 0 and S and T are said to be disjoin~. If S n T 

are not disjoint. they are said to intersect. Likewise. the intersection of two coiers F and 

G is defined as the union of the pairwise intersection of the cubes from each cov1r. 

The supercube of S and T (supercube (S. T)) c, the prodtct t"'m 

X SIUTIXS2UT2 ... xsnUTn I 
1 1 n which is the smallest product term containing both S and T. 

Likewise. the supercube of a cover F is the smallest product term containing very pro

duct term of F. 

The distance between S and T equal' the number of empty literals in thei~ int.,sec· 

tion . If the distance between two cubes is 0 they intersect, otherwise they are dfsjoint. 

The sharp-product of S and T (S #T) is the null product term if S and ~ are dis-

joint. Otherwise. it is the sum-of-products: 

s # T = s (l T = u X~ I . . . xti nTi . . . x:n 
i = 1 

S #T contains all of the minterms of S which are not contained by T. 

The consensus of S and T (consensus (S. T )) is the sum-of-products: 

n 

U XS 1 nT 1 ... XS 1 UT1 ••• XSnnTn 
1 1 n 

i = 1 

If distance (S. T) ~ 2 then consensus (S . T) = 0. If distance (S . T) = 1 and S; n T; = 0. 

( ) s 1 nr 1 s ur .fS' nr 
then consensus S . T is the single product term X 1 · · · X; 1 1 

• • • X~ n n. If 

distance (S. T) = 0 then consensus (S. T) is a cover of n terms. If the consensu~ of S and 
I 

T is nonempty. it contains minterms of both S and T. Likewise. the consensrs of two 

covers F and G is defined as the union of the pairwise consensus of the pro~uct terms 

' 
from each cover. 

I 

The cofactor (or cube restriction) of S with r~spect t~ T (Sr) is e~pty itS and T 

. . . . . . S UT S UT S UT . . 
are diSJOint. OtherWISe. It IS the product term X 1

1 
I X 2 

2 2 
. • . xn n n. LI . eWISe the 

cofactor of a cover F with respect to a cube S (Fs) is the union of the cofactor of each 
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cube of F with respect to S. 

2.3. Positional Cube Notation 

I 

L X slxs2 s et I 2 ... Xn n be a product term. This product term can be reprinted by ' 

binary vector: 

0 I P 2-l 0 1 P -1 
C 2 C 2 . · . C 2 - Cn Cn • · · Cn n 

where c/= 0 if j ~ S;, and c J = 1 if j E S;. This is called the positional cube nc!>tation or 

more simply a cube [Su72]. A cube is a convenient representation for a product term. and 

the terms cube and product term will often be used interchangeably. (For example. a 

prime cube is a cube which represents a prime implicant.) 

0 1 p - 1 
The notation c; represents the binary vector c; c; · · · c; ' , and I c; I represents the 

number of 1's in the binary vector. The notation c; Ud; refers to the bit-wise OR of two 

binary vectors. c; nd; refers to the bit-wise AND of two binary vectors. and C; refers to 

the bit-wise complement of a binary vector. 

A sum-of-products will be represented by a set of cubes. also called a cover. A cover 

also has a natural two-dimensional matrix representation. where each row of the matrix is 

a cube. 

Continuing with the example, the following is a cover for the function: 

x1 x2 x3 
012 01 012 
100 01 101 
010 10 011 
100 10 110 
011 01 110 

The cube representation of a product term is useful because Boolean operations on the 

binary vectors correspond to the useful operations on the product terms. For ex~mple, one 
I 

product term contains another if and only if their corresponding cubes contain t'ach other 

as bit-vectors, the intersection of two cubes is the cube which results from co ponent

wise Boolean AND of the two cubes. and the supercube of two cubes results from the 
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component-wise Boolean OR of the two cubes. 

For computer implementation of the algorithms, the cube provides a conv1nient data 

structure where one bit is used for each part of the cube. It is possible to perf rm opera-

tions on the cubes as word-wide operations (i.e., the bit-wise Boolean AND of wo 32-bit 

vectors on most 32-bit computers) which is more efficient than manipulating he binary 

vectors element by element. 

2.4. Generalized Shannon Cofactor and Multiple-Valued Unate Functions 

In [BMH84]. unate functions were defined for binary-valued functions, a 

important properties of unate functions were proven. In particular, it was sho that the 

problems of finding the smallest cube containing the complement of a function dan impor-

tant step of REDUCE). and the problem of determining whether a function is a tautology 

(an important step of both IRREDUNDANT and ESSENTIAL) can be answered quickly for 

unate functions. When these results are combined with Shannon's Theorem and the cofac-

tor operation defined in Section 2.2. efficient recursive algorithms can be devised which 

attempt to split the function so as to reach a leaf where the function is unate, and then 

quickly determine the result for the unate function. 

The basic paradigm for manipulating multiple-valued functions is to use the 

multiple-valued extension of the Shannon Cofactor which is called the Generali.zed Shan-

non Cofactor [Sas84a. Lemma 3.2]: In Proposition 2.3. F is a cover of a multiple-valued 

function. Recall that Fci represents the cofactor ofF with respect to the cube c;. 

Proposition 2.3: Let c; , i = 1 · · · m be a set of cubes satisfying 

c; n c j = 0 for i ~ j . Then. 

m 

F= U c; nFci 
i= 1 

m 
U c; = 1 and 

i= 1 

Remark: Using simple algebraic operations of Boolean algebra. it is east to shot that the 

operations of tautology. complementation and computing the supercube of the co~plement 

of a cover (an important operation of REDUCE) can be computed using the properties: 
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F=t ¢:~ Fc,=t fori = 1 · · · m 

m 

F= Uci nFC; 
i= 1 

m 

supercube(F) = supercube( U c; nsupercube(F ;)) 
i = 1 c i 

In this section. I consider how to extend the definition of a binary-valued u~ate func-

tion to the multiple-valued case. I show that there are two useful extensions. The first. 

referred to as weakly-unate. preserves the important property that tautology and comput-

ing the supercube of the complement are trivial operations for weakly-unate functions. 

However. a weakly-unate function does not satisfy some of the other pr~perties of 

binary-valued unate functions. namely. that all prime implicants of a binary-vatued unate 

function are essential or that the complement of a binary-valued unate function is unate. 

Hence. I also define a strongly-unate function (a stronger condition on the function than 

weakly-unate) which preserves these two properties. It is important to note that the 

definitions of weakly-unate and strongly-unate coincide for the special case of binary-

valued functions. 

In this section. I also consider how to choose the cubes c 1• c 2
• · · · em when parti-

tioning the function. 

2.4.1. Weakly-Unate Functions 

Definition 2.1: A function is said to be weakly-unate in variable X; if there exists a j such 

that changing the value of X; from value j to any other value causes the function value. 

if it changes. to change from 0 to 1. If a function is weakly unate in all of its variables. 

then the function is said to be weakly unate. 

If a function is weakly unate in variable X;. then changing the value of variable X; 

to value j causes the value of the function. if it changes. to change from 1 to 0. Hence. 

there is no need to define both unate increasing and unate decreasing functions. j' 

Definition 2.2: A cover F is said to be weakly-unate in variable X; if there exist a j such 

that all cubes which depend on variable X; contain a 0 in the position j. 
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For example. the following cover is weakly-unate because it is weakly-unate in part 

1 of variable 1. part 1 of variable 2. and part 5 of variable 3. 

11111-00001-11110 
01100-00011-01010 
01010-00100-11111 
00110-01001-11010 
00001-11111-10110 

I 
I 
i 

I 

Proposition 2.4: A weakly-unate oove' in va,iable X, is a wve' fo' a weakly-+ate funo-

tion in variable X; . I 

Proposition 2.5: A fundion f is weakly-unate in vadable X; if and only if th+e exists a 

j such that each prime implicant of f which depends on variable X; has a 0 inl part j of 

variable X;. Hence. a prime cover for a weakly-unate function is also a weakly-unate 

cover. 

The proofs of these propositions are trivial extensions of the proof for the binary-

valued case as in Propositions 3.3.1. 3.3.2 and 3.3.3 of [BMH84]. 

A simple test for whether a cover is weakly unate in a variable X; is to form the 

supercube of all cubes ofF which do not have a full literal in variable X;. This supercube 

has a 0 in any parts of X; that are weakly unate. 

The following result is useful for determining whether a weakly-unate function is a 

tautology: 

Proposition 2.6: Let F be a weakly-unate cover in variable X;. Let 

G = { c E F I c does not depend on X; } . Then G =1 +-+F =1. 

Proof: Clearly. if G =1. then F=l. Assume that j is the part required by De1nition 2.2 

for F to be weakly-unate in variable X;. and assume G ~1. Then there exists ~ minterm 

m EG with a 1 in value j of variable X;. However. F is unate in X; . and henc1 no terms 

of F have a 1 in value j of variable X;. Therefore. if follows that m I-F. and hence 

F~l. 

I 
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There is a special case when all variables are weakly unate: 

Proposition 2.7: A weakly-unate cover is a tautology if and only if one of the c~bes in the 

cover is the universal cube. 
I 

I 
I 

Proof: By repeated application of Proposition 2.6, the function is a tautology if 1nd only if 

G = { c E F I c does not depend on X; for all i } . Only the universal cube canl be in G, 

I 

and hence G :::::1 if and only if the original function contains the universal cube. : 

I 

Hence, the weakly unate condition on a function is sufficient to allow a simplification 

of the function for the purpose of answering the tautology question. Also, as is shown in 

Section 4.6. weak-unateness is sufficient to determine the smallest cube containing the 

complement of a function. Two other useful properties of binary-valued unate functions 

are: (1) all prime implicants of a binary-valued unate function are essential. and (2) the 

complement of a binary-valued unate function is also unate. However. these two proper-

ties do not hold for weakly-unate functions. Hence. there is motivation to find a stronger 

condition than weakly-unate which preserves these properties. 

To understand the limitation of weakly unate. consider that. in the binary-valued 

case. if a cover F is unate, then the cover contains a cube c if and only if the cube is con-

tained by some cube of the cover. This is true because Fe is unate if F is unate. and 

hence. Fe -1 if and only if Fe contains a universal cube. However. Fe contains a univer-

sal cube if and only if it contains a single cube which contains c. However, it is not true 

that Fe is weakly unate whenever F is weakly unate as the following example shows: 

10-11-11-111 
11-10-10-100 
11-11-10-010 

cofactoring against c=10-10-10-110 produces 

11-11-11-111 
11-11-11-101 
11-11-11-011 
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which is not weakly unate in variable 4. Also note that the function F cont~ins c. but 

that no single row ofF contains c. 
I 

i 
Also. in the binary-valued case. all primes of a unate function are essentiJL and the 

complement of a unate function is unate. However, the function presented earl¥r violates 

both of these properties: 

11111-00001-11110 
01100-00011-01010 
01010-00100-11111 
00110-01001-11010 
00001-11111-10110 

(essential) 
(nonessential) 
(essential) 
(nonessential) 
(essential) 

The complement of this function is: 

00110-01000-00101 
11111-00001-00001 
00001-11110-01001 
01100-00010-10101 
11000-11000-11111 
10100-10100-11111 
10010-10010-11111 

which is weakly unate in variable 3. but not in variables 1 or 2. 

Hence. we seek a condition stronger than weakly unate that preserves these proper-

ties. 

2.4.2. Strongly-Unate Functions 

Definition 2.3: A function is said to be strongly unate in variable X; if the values of X; 

can be totally ordered via :s_ such that changing the value of variable X; from value j to 

value k (where j :s_ k) causes the function value, if it changes. to change from 0 to 1. If 

all variables of a function are strongly unate, then the function is called strongly unate. 

Clearly any function which is strongly unate is also weakly unate in the part of 

variable X; which is less than (via :s_ ) all the remaining parts. A strongly-m)ate func-

tion provides a total order for all of the parts, and a weakly-unate function m~rely pro-

vides a single part which is less than all remaining parts. 
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Proposition 2.8: A strongly-unate cover contains a cube if and only if the c~be is con-

tained in some cube in the cover. 

i 
Proof: If H is strongly unate. then He consists of those cubes of H which intejrsect with 

c. with the addition of full columns in the positions where c/ is 1. Hence. f/c is also 
i 

strongly unate and is a tautology if. and only if. it contains a universal cube. Bpt. He can 
I 

contain a universal cube if. and only if. it contains a single cube which contains d. 

I 

Proposition 2.9: All primes of a strongly-unate function are essential. 
I 

Proof: Exactly as proposition 3.3.6 in [B:MH84]. where Proposition 2.8 replaces +oposition 
I 

3.3.5 of [BMH84]. I 

I 

Proposition 2.10: The complement of a strongly-unate function is strongly-unate. 

The algorithms developed for Espresso-MV make use of weakly-unate functions. but 

do not make use of strongly-unate functions. The description here of strongly-unate 

functions is presented for the sake of completeness. I wish to thank Dr. Agnes Hui Chan 

of Mitre Corporation for suggestions leading to the definition of strongly unate. 

2.5. Choice of Partition 

Once a cofactor Fe; becomes weakly unate. it is trivial to determine if the function is 

a tautology. or it is trivial to compute the smallest cube containing the complement of the 

function. Hence. we wish to choose a partition ci. i = 1 · · · m so that each cofactor Fe; 

becomes a weakly-unate function as quickly as possible. 

The choice of partition is simplified by first choosing a splitting variable. followed by 

a choice of a partition of the splitting variable into a number of cubes which depend on 

only the splitting variable. Any cube in the cover which is independent of tht splitting 

variable is duplicated in all branches of the recursion. hence this consideration tters into 

our choice of the splitting variable. I 
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There is an important difference between the binary-valued case and thei multiple-

valued case. 

cl=xlol 
I 

When the variable has only two values. the function is split with! the cubes 

and c 2 = X; 1 1 1; the only choice is which variable X; to use fo~ splitting. 
! 

But this choice is easy to make. The most binate variable [BMH84]. defined as t~e variable 

which has the most cubes in the cover which depend on it. leads to the minimut duplica

tion of cubes after applying the Shannon Cofactor. As a secondary consider~tion. it is 
I 

desirable to keep the recursion balanced. Therefore, as a tie-breaker, Espresso ctooses the 

variable which has the closest to an equal number of cubes with X 1 01 and X 1 1. These 

rules guarantee a minimum of duplication between Fc 1 and Fc 2 at the next le el of the 

recursion. 

When a variable has more than two values. however. we must also choose how to 

partition the parts of the variable into a number of different cubes. There are two possi-

bilities: 

(1) Partition the values of the splitting variable into two disjoint sets l C P; and r C P; 

(with l n r = 0. and l Ur = P; ). The function F is then split into two parts: 

This enables us to maintain a binary recursive strategy. However. unlike the binary-

valued case. this does not necessarily make each of the cofactors independent of the split-

ting variable. 

(2) Partition the values of the splitting variable X; into the p; cubes 

X l 0 I. X l 1 I. · · · X 1 
Pi-I 

1. This effectively eliminates variable X; at this level of 

the recursion. and forms a p; -way splitting of the function: 

I chose strategy 1 because it leaves more degrees of freedom at the next level of the 

recursion. For example, if a variable has 8 values. splitting on all 8 values (as suggested 

by (2)) gives us the 8-way tree shown below: 
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Using the binary partition (as suggested by (1)) and choosing the same variable for split-

ting at the next two levels, we get the binary tree shown below: 

However. at either the second or third level there is more freedom in that a different 

variable may be chosen for splitting. Hence. strategy 1 reduces to strategy 2 in the case 

that the same variable s chosen at each level. Note too. that strategy 1 also gives us a 

natural way to use a tree structure to perform then -way merge which would be required 

by strategy 2. 

I 

I 
2.S.l. Choice of Splitting Variable 

The simple test of which variable has the most number of ··active" va+es. i.e .. a 

value which does not have a column of all l"s in the cover is used to select the vrriable for 
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i 

splitting. Ties are broken by selecting the variable with the most total number tf O's. and 

then by selecting the variable which has the fewest number of parts which c1ntain a 0. 

Note that this heuristic is equivalent to the binate heuristic of Espresso-II in ~he case of 

binary-valued variables. And, when the variable are binary valued. it achieves {he goal of 

making the cover weakly unate. I 

2.5.2. Choice of Partition for the Splitting Variable 

It was mentioned earlier that in the multiple-valued case it is more difficul to choose 

a partition of the values which yields a minimum of duplication of cubes during the recur-

sion. This can be formulated as follows: 

Problem: Find a set of values c 1 and c 2 such that the total number of cubes in F 1 U F 2 c c 

is minimized. 

Consider the submatrix of the cover F restricting our attention to only the columns 

associated with variable X;. Consider finding a row and column permutation of the 

matrix into the form: 

which minimizes the number of rows of B. 

The columns of A are identified with the first half of the partition c t and the 

columns of C are identified with the second half of the partition c 2
. The cubes of B are 

duplicated in both halves of the recursion. 

This problem is a standard partitioning problem. Form a graph from the columns of 

the matrix by placing an edge between two columns that have l's in the same row. The 

weight of this edge is equal to the number of different rows in which these columns share 

l's. The problem is then to partition the nodes into two disjoint sets such that a minimum 

total edge weight connects the two sets. 
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Solving the preceding problem is potentially expensive so I choose instead t~ partition 

the active parts to place the first !2. into the set l, and the remaining !2. active! parts into 
2 2 i 

the set r. This heuristic is very fast to compute (if a little crude), but it remain~ no worse 
I 

than an initial n -way split on the function. My experience with Espresso-MY i~ that even 
I 

with this simple heuristic, up to twenty-five percent of the time for the recursife routines 

is spent determining the partition for the next step of the recursion. I 



CHAPTER 3 

Logic Optimization of PLA's 

In this chapter. I consider several important logic optimization steps in the desig~ of a PLA 

(i.e .. optimizations that change the structure of the Boolean equations implemented in the 

PLA). The optimizations I consider are: (1) Logic minimization, (2) Output phase assign-

ment. (3) Input variable assignment and the use of two-bit decoders. (4) Optimal encoding 

of the input values to the PLA. and (5) Optimal encoding of the output values of the PLA. 

The intent is to show how multiple-valued minimization can be applied to each of these 

problems. 

3.1. Logic Minimization 

The logic minimization problem is to find a minimum cost cover for a given Boolean 

function. The cost of a cover is defined as the sum of the costs of the cubes in the cover. 

One typical cost function for a cube is: 

cost (c)= 1 (3.1) 

This reflects the primary goal of minimizing the number of product terms in the PLA (and 

hence, minimizing both the area and delay associated with the PLA). It can be shown that 

restricting attention to prime implicants is sufficient to find a minimum solution for this 

cost function. 

A secondary concern is to also minimize the total number of transistors in the PLA 

(hence reducing parasitic capacitance in the array. and improving the prospects for folding 

the array). Hence. another potential cost function is: 

cost (c) = 1 + # transistors to implement c 
maximum # transistors in any implicant 

(3.2) 

Also, the cost function 
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cost (c) = #transistors needed to implem£nt c (3.3) 

appears useful in applications of Boolean minimization to multiple-level networ*. 

When the cost function for an implicant obeys the property that 

c C d ==> cost (c) ~ cost (d) I (3.4) 

then the solution to the minimization algorithm consists of prime implicant~ [Rot80]. 

However. cost functions 3.2 and 3.3 violate this property because of the afymmetric 

nature of the output-part of the implicant. Consider the two implicants: I 

10-11-10-110 
1 0-11 -1 0- 1 00 

The first three variables each have two parts. and the fourth variable, representing the 

output-part of the multiple-output minimization, has three parts. Each 1 in the fourth 

variable corresponds to a transistor in the output-plane of the PLA. The first implicant 

contains the second implicant, but the second implicant costs less (using 3.2 or 3.3) 

because fewer transistors are needed to implement it. 

Hence. with these last two cost functions. it is possible that the minimum solution 

will not consist of prime implicants. Most minimization algorithms (whether heuristic or 

exact) sidestep this problem by limiting themselves to solutions consisting of prime impli-

cants, and then. as a second step. they attempt to minimize the number of transistors 

needed to implement the PLA. The primary cost function used is 3.1, with co111Sideration 

also given to reducing the number of transistors. 

Finally. it is important to remember that the goals of minimizing the number of pro-

duct terms and the total number of transistors sometime conflict. It is possible that a 

cover with fewer product terms may require more transistors than a different cover with 

more product terms. As is shown in Chapter 6, for the problems which are solvable by an 

exact minimizer, Espresso generates solutions with more product terms. but few~r transis-

tors. 
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The techniques for solving this optimization problem exactly are w111 known 

[McC56. Qui55]. Using cost function 3.1 the two steps are: 

( 1) Generate the set P of all prime implicants of the function: 

(2) Extract from P a minimum subset that is sufficient to represent the runction. 

Many algorithms have been presented for generating all of the prime impl~cants of a 

multiple-output function [DAR86, Rot80, Tis67]. and most of these can be easily extended 

to the case of multiple-valued binary functions. In Section 4.3, two tech~iques are 
i 

presented for generating the complete set of prime implicants for multiple-val~ed func-

tions. 

Solving the second step usually proceeds by forming the prime implicant table, A, 

which is a binary matrix with the prime implicants listed across the columns of the table, 

and the minterms listed down the rows of the table. A 1 is placed in position A;i if the 

minterm i is contained in the prime implicant Pi E P. The problem is then reformulated 

as a special case of an integer-programming problem known as the minimum cover problem. 

This problem is to find a binary vector x satisfying 

A •xT ~ (1.1,. .. ,1) 

(i.e., each element of A •xT is greater than or equal to 1) such that 

IPI 
L, cost (p; ) X; 

i = 1 

is minimized. 

The procedures row dominance and column dominance (described in Chapter 5) exploit 

relationships among the rows and columns of A to reduce the size of the matrix. Thus, 

one of the goals of an exact minimization algorithm is to generate directly the reduced 

form of the table. For example, generating only the prime implicants and using them for 
' ' 

the columns of the matrix is a heuristic (which applies when the cost functio~ follows 

property 3.4) for generating a reduced form of the table. Likewise, the IRRE~UNDANT 

algorithm presented in Section 4.4 is able to avoid listing minterms along the rows of A in 
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favor of higher dimensional cubes. and hence it directly generates a reduced form of the 

prime implicant table. 

3.1.1. Difficulty of Logic Minimization 

I 
There are good reasons why an exact minimization algorithm cannot alwa1s produce 

a result within a reasonable expenditure of computer resources. I review herel two well 

known failures for minimization algorithms that rely on the two steps outlined 1bove. 

I 

First. the generation of the set of all prime implicants may fail because th re are too 

many prime implicants to be enumerated. There are functions with an e ponential 

number of prime implicants (as a function of the number of input variables). T ese "bad" 

examples are often cited when referring to the complexity of generating all of the prime 

implicants of a function. However. it is often the case that these bad func ions also 

require a very large number of implicants just to represent the function in two-~evel form 

(i.e .. the minimum subset of the set of all prime implicants is also of exponential complex-

ity in the number of inputs). 

Example 1: The parity function of n variables has 2n - 1 prime implicants. but alS10 requires 
2n - 1 implicants for a minimum solution. Thus. if one can afford to present the exact 
minimization program with a two-level form of this function. then the exact minimization 
program can always afford to generate the set of all prime implicants (because the ratio 
between the size of the minimum cover and the set of all primes is 0 (1)). 

Example 2: The symmetric function of 3k variables described by ''between k and 2k of 
the input variables are 1" has I tk II 2j; I prime implicants (which. asymptotically. equals 3: 
for n = 3k ). But this function requires [3:) implicants to describe in two-level form. and 
hence again. if one can afford to represent the function at all in two levels. then one can 
afford to generate all of the prime implicants for the function (because the ~et of all 
primes is smaller than the square of the number of terms in the minimum cover)j 

Hence. these two examples are not sufficient to prove the case that the genfration of 

the set of all prime implicants is difficult. One metric for measuring the comflexity of 

generating the set of all prime implicants is the relationship between the s~e of the 

minimum cover (I M I) for the function and the number of prime implicants ~I PI) for 

the function. Generating the set of all prime implicants is most difficult when I the com-

1 

plexity of I P I as a function of I M I (and not n ) is greatest. 



§3.1.1 26 

A new result [McS84] shows that the worst case complexity for generating! the set of 

all prime implicants is IP 1=2 1
M

1-L and that this bound is precise in that th~e exists a 

function with this complexity between its minimum cover and the set of all prid:tes for the 

function. Thus. there is the negative result that the set of all primes can becomf too large 

to enumerate even though it is possible (and efficient) to represent the functi~n in two-

level form. 

The second failure of exact minimization algorithms is that they rely on solving the 

minimum covering problem which is known to be NP-hard [GaJ79]. Further. the parame-

ter that controls the complexity of the covering problem is I P I the size of the set of all 

prime implicants. Hence, if a branch and bound strategy is used to solve this covering 

problem. then the complexity can be as bad as 2 1P 1, or. with respect to the users initial 

input. the complexity can be as bad as 221
M 

1
. 

This is not to say that exact minimization is not possible for many functions. The 

problem is that. in general, it is not possible to tell a priori which problems cannot be 

solved within a reasonable expenditure of resources. Further. there will always be prob-

lems which will be beyond the reach of any exact minimization procedure. Hence, there is 

strong motivation for good approximate algorithms for solving the logic minimization 

problem. 

3.2. Output Phase Assignment 

The output of a PLA is typically buffered with either a noninverting or an inverting 

buffer (depending on the actual implementation of the PLA). However, consider selec-

tively changing each of the output buffers to be either inverting or noninverting. and 

choosing. for each function. whether to implement the logic equations for the function or 

its complement. As the phases of the outputs are changed. the Boolean equati~ns which 

are implemented by the PLA are changed, and hence the size of a minimum set of terms to 

implement these equations also changes. Quite often this can reduce the numj of rows 

needed for the PLA as well as the number of transistors, and leads to a mor area and 
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time-efficient implementation of the function. The problem of choosing for e+h output 

whether to implement its positive phase or its negative phase is called the o~tput-phase 

assignment problem. 

I 
It is still an open problem as to how to make an optimal choice from the 2 possible 

assignments of phases. Note that merely minimizing each function once for th function, 

and again for the complement of the function, is not a good strategy for choosin the phase 

assignments. In particular, the greatest advantage from the choice of phase a signments 

for a PLA implementation comes when a single product term can be used in s eral out-

puts. and this simple algorithm ignores this effect. Sasao [Sas84b] suggests thei following 

algorithm for determining the phase assignment for a PLA with the outputs / 0 • / 1 • · · · .fm: 

( 1) Form the double-phase characteristic function which is a PLA implementing 

the 2m functions fo. fi, · · · .fm. fo. fJ. · · · .fm · 

(2) Use a heuristic logic minimization algorithm to find a minimal cover for the 

double phase characteristic function. 

(3) Select from among the cubes in this minimal cover a minimum subset which 

is sufficient to realize either /; or /; for each i = 1 · · · m . This is done by 

either expanding the covering expression. or by using a branch and bound 

method. Each of these techniques is described in more detail in [Sas84b]. 

(4) Form the PLA which implements the output phases as chosen in Step 3. and 

find a minimal cover for this function. 

Most of the time taken for this algorithm is in the heuristic minimizer. although step 

3 is potentially difficult for a problem with many outputs. 

As an example of the usefulness of output phase assignment, I consider two of the 

PLA"s from the SOAR microprocessor [SKF85] which used PLA-based control logic. Infor-

mation on the two largest PLA"s are given in Table 3.1. 
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name inputs outputs rows rows after rows usin ~-in minimized output phase complement for 
PLA optimization all functio ~s 

cplal 9 16 38 28 26 
xcplal 9 23 41 32 30 
both 10 39 79 45 43 l 

I 
I 

Table 3.1. SOAR Control PLA's Before and After Output Phase Assignme~t. 
! 

It was intended that the control logic would be implemented as a single P.lA (both). 

However. the delay through the single PLA was determined to be too long. and hence the 

PLA was manually partitioned into cplal and xcplal to reduce the delay. This p rtitioning 

effectively duplicated the area of the AND-plane in each of the PLA's, and invol ed a sub-

stantial amount of external area to route the inputs to each PLA. 

The size of each PLA as implemented in the SOAR design is given in the column 

"rows". (Each of these has been minimized using Espresso-MY.) The result of Sasao's 

algorithm (using Espresso-MY as the heuristic minimizer) is given in the column "rows 

after output phase optimization", and the result of minimizing the complement of every 

function is shown in the column "rows using complement". The number of rows is seen 

to be less (in all cases) when the complement of every function is used. as opposed to an 

"optimal'' choice of output phases for the outputs. Note that using the complement of all 

functions doesn't necessary provide the optimum phase assignment for these examples. 

Hence. I feel that the potential exists for better algorithms for the optimal phase assign-

ment problem. 

3.3. Input Variable Assignment and the Use of Two-Bit Decoders 

Typically in a PLA. an input buffer provides the complement of each input. and 

buffers the normal form of the input for driving the column of the PLA. Consider the 

input buffers for two adjacent inputs. say a and b. These buffers generate the ffur logical 

- I 
signals a. ii. b. b. In a product term the AND of those columns with a trtnsistor is 

formed. There are sixteen possible ways to place the transistors in the four colrmns and 

ten different functions of two variables can be generated as shown in Table 3.2. (A 0 in 
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the table corresponds to a transistor. and a 1 corresponds to no transistor to be !consistent 

with the cube representation for a product term.) The function is then AND'e<f with the 

function formed from the rest of the variables to form a single product term. !Note that 

seven of the arrangements of transistors result in the Boolean AND of a sign~l with its 

complement and hence is 0. This forces the entire product term to 0. and the pr~duct term 

contains no useful information. Therefore. only nine useful functions of a an~ b can be 

generated. 

a jj b b function comment 
1 1 1 1 1 
1 1 1 0 b 
1 1 0 1 b 
1 1 0 0 0 trivial 
1 0 1 1 jj 

1 0 1 0 iib 
1 0 0 1 iib 
1 0 0 0 0 trivial 
0 1 1 1 a 
0 1 1 0 a b 
0 1 0 1 a b 
0 1 0 0 0 trivial 
0 0 1 1 0 trivial 
0 0 1 0 0 trivial 
0 0 0 1 0 trivial 
0 0 0 0 0 trivial 

Table 3.2. Functions generated by normal PLA buffer. 

Another possibility. however. is to generate the four possible decodes of the two vari

ables a and b. namely. a+b.a+b.ii+b. and ii+b. Using these rather than using the 

signals and their complements it is possible to form all sixteen functions of twd variables 

as shown in Table 3.3. For example. ab = (ii +b )(a +b)( a +b). 
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ii+b ii+b a+b a+b function comment 
1 1 1 1 1 
1 1 1 0 a+b new 
1 1 0 1 a+b new 
1 1 0 0 a 
1 0 1 1 a+b new 
1 0 1 0 b 
1 0 0 1 ab+ iib new 
1 0 0 0 a b 
0 1 1 1 ii+ b new 
0 1 1 0 a b + iib new 
0 1 0 1 iib 
0 1 0 0 a b 
0 0 1 1 a 
0 0 1 0 iib 
0 0 0 1 iib 
0 0 0 0 0 trivial 

Table 3.3. Functions generated by two-bit decoder PLA buffer. 

Note that using two-bit decoders generates the nine useful functions obtajined with 
; 

the normal PLA buffer as well as six new functions. This leads to the followitg conclu-

. I 
swn: I 

Proposition 3.1: Given a PLA with one-bit decoders (normal PLA buffers) it is Jossible to 

group the inputs into pairs (in any order) and replace the input buffers with two-bit 

decoders to yield a bit-paired PLA with the same number of columns and no more rows 

(product terms) than the original PLA. 

A straightforward mapping from the original PLA to a bit-paired PLA results in a 

PLA with the same number of rows. but there will be more transistors in each row (for n 

inputs. each row will contain i more transistors as it takes one more transistor for every 

pair of variables to implement the same function after pairing). However. the benefit of 

bit-pairing comes from minimizing the logic function after the variables have bern paired. 

Theorem 2.1 of [Sas84b] shows that the logic minimization problem for a given! choice of 

pairing of variables is equivalent to a multiple-valued input logic minimization. I 

This can be generalized to allow forming the 2n decodes of n variables (i.~ .. t: pair 

the th; ee variables a. b. c forming the eight decodes a+ b + c. a+ b + c. ~ + b + c. 
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a+ b +c. a+ b +c. a+ b +c. a+ b +c. and a+ b +c), or to allow redundatjtt pairings 

of variables (i.e .. to pair four variables a. b. c. d as (ab )(ac )(ad)). In both I cases. the 

resulting minimization problem is still equivalent to a multiple-valued Boolean 1minimiza-

tion. However, in each of these cases. the number of columns in the PLA wi]l increase. 

The resulting optimization problem of finding the optimum pairing to minimiz¢ the total 

area of the PLA is a very difficult one. Hereafter I consider only nonredundant fairings of 
' 

two variables. 

However. there is still the problem of choosing which variables should be paired 

together to achieve the greatest reduction in the number of terms in the PLA. There are a 

large number of possible pairings. as the next proposition shows: 

Proposition 3.2: For a function of n variables (n even). there are 

n-l 1 II i= n. 

i=lodd ~n n ' 22 - ' 2 . 

ways to choose the assignment of variables to two-bit decoders. (If n is odd. add a 

dummy variable and consider a variable to be unpaired if it is paired with the dummy 

variable: hence. the number of pairs for n odd is the same as the number of pairs for 

n +1.) 

Proof: To count the number of possible pairings. consider the problem of pairing n vari-

abies as one of picking the first variable and pairing it with each of the remaining n -l 

variables. and recursively counting the number of pairings for n -2 variables leading to 

the recurrence: 

n -1 X f (n -2) if n > 2 

f (n ) = 1 if n = 2 
0 if n <2 

n-1 

It is easy to verify that II satisfies this recurrence. 
i= l,odd 

• 
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One important observation is that the problems of output phase assigz"tment and 

input-variable assignment are not independent. For example. consider the simple function 

f =ab+cd. There are three possible input-variable assignments: (a b) (c d);(~ c) (b d); 

and (a d) (b c). Each yields two product terms for f . There are two pos~ible phase 

assignments: either implement the function as is with two product terms. or tmplement 
I 

the complement of the function (J = ii c +ii d +b c +b d) which requires f~ur terms. 

Thus. performing input-variable assignment first, there is no reason to pair an variables 

at all. Or. by performing output-phase assignment first. it is best to implemen the func-

tion rather than its complement. However, by implementing the complement o the func-

tion with the input-variable assignment of (a b) (c d), the function requires onty a single 

term. 

Sasao [Sas84b] presents the following algorithm for choosing an optimal assignment 

of variables to the input decoders for a PLA function: 

(1) Use a heuristic minimizer to obtain a minimal cover for the function without 

considering two-bit decoders. 

(2) Determine the number of cubes that can be removed from the cover if vari-

abies i and j are paired for each pair of input variables i and j. This is done 

by forming the multiple-valued cover corresponding to the pairing of i and j 

and then either performing a distance-1 merge in the paired variable (a quick 

upper bound). or by actually minimizing the function after the pairing (more 

precise. but much more expensive). 

(3) Create the assignment graph (a complete graph where the nodes represent 

(4) 

input variables, and an edge between nodes i and j has weight w if w cubes 

can be removed from the cover if variables i and j were to be paire~i). 

Cover the assignment graph with disjoint edges so as to maximize tte sum of 

the weights of the edges. If there are 16 or fewer inputs. it is rea onable to 

enumerate all possible coverings (for 16 variables, there are 2.027.025 
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different coverings). and choose the pairing of maximum sum: otherwise a 

heuristic technique (as described in [Sas84b]) can be used. 

(5) Form the multiple-valued function corresponding to this pairing of! the input 

variables. and find a minimal cover for the function. 

One problem with this algorithm is that it ignores interaction between ~airs. For 

example. if the pair (1 2) removes 5 terms, and the pair (3 4) removes 5 terms, there is no 

easy way to predict how many terms can be removed with the pairing (1 2) (3 4). Also. it 

does not consider the effect of output phase assignment on the input-variable assignment 

problem. Presumably. one can perform phase assignment followed by input bit-pairing. 

and then bit-pairing followed by phase assignment to see which yields better results for 

each problem. 

As an example of using two-bit decoders. I consider the combined version of the con

trol PLA's from the SOAR microprocessor mentioned earlier (both). Choosing the negative 

phase of each function gives the PLA shown in Table 3.4 with 43 rows and 686 transis

tors. The function is represented in standard PLA format (described in Appendix A) 

which uses {0. 1. -} for the binary-valued input variables. and {0. 1} for the output vari

ables. The first step is to apply Sasao's algorithm to choose a pairing of the input vari

ables. and then to minimize the function with this pairing. The optimal pairing chosen 

was (1 2) (3 7) (4 5) (6 8) (9 10), and Table 3.5 shows the direct translation of the PLA 

(term by term) from Table 3.4 resulting in the bit-paired multiple-valued function. 

Finally, Table 3.6 shows the result of the multiple-valued minimization which resulted in 

36 rows and 822 transistors. In this case. the bit-pairing has increased by 136 the number 

of transistors in the PLA while reducing by 7 the number of rows. 
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input plane 
-0101-001-
-0-0111-1-
-01---111-
--0-01101-
-0-1--111-
-0---1001-
--01011-1-
-00--1101-
--1--1111-
--01--1---
--1110011-
--100-111-
--1010001-
--------10 
----11111-
---1--111-
--000-111-
--0--0-01-
-0--1-111-
--1-000-1-
--11-0001-
--0-11011-
--101-011-
--0--0011-
-1--------
---0-1101-
--11-1101-
--1-01101-
--0----01-
1--------
----11-0--
---01-0-1-
---11-0-1-
----10111-
--0101011-
-----1111-
----00--1-
----0-001-
---001011-
--11-1011-
-----0101-
-------00-
-------10-

output plane 
000000000000000000000000000000000010000 
000000000000000000000000000000000010000 
000000000000000000000000000000000010000 
000100100000000000000000000000000000001 
000000001000000000000000000000000010000 
000000000000000000000000000000000011000 
000100000000000000000000000100000000110 
000000001100001000000000000000000010000 
000100000000000000000000000100000000000 
000010000000000001000000001000000000001 
100010010100001010010000000000000000000 
000000101000100101100000000000001100000 
101010110110000000000100000000100000000 
000000000000000000000000100001000000000 
000100100000000001100000000100001100000 
000000100000000101100000000000001100000 
000000010000110100100010000000001101010 
000010010100001000000000000000000000000 
000000001100001100000000000000000010101 
000000111000010000100010000000000000010 
100010111100001000011000000000000000000 
110010010100001010011100000000010000000 
110010111100001000000100000000100000000 
110010010100011010001010000000100000010 
000000001100001100000000000000000001111 
100011000101111000000010000100000001010 
100011010101111000000010001000000001011 
010000111000000000111101001110100000101 
110001000001010000111100000010100000000 
101101111111110100000000000000000000000 
010000101000100000111101000110100001100 
000001000001110000111011001110000001111 
010001000001110000100111001110100001111 
110011100001100001111101001110101101000 
110011010101111001111101001110100001111 
110011000101011000011101111001100000111 
110011000101101000011101001110100001101 
010011101001110000111111001110100000111 
110011010101111000111111001110100001111 
110011111101111000111111001110100001111 
110011010101111001111101001110100001111 
110010101010111001111111001111100001111 
110011101001111001111111001111100001111 

Table 3.4. SOAR Control PLA (Using Complement of all Functions) 

34 
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(1 2) (3 7) (4 5) (6 8) (9 10) Outputs i 

0101 1010 0010 1100 1100 000000000000000000000000000000( 00010000 
0101 1000 1111 1010 1100 000000000000000000000000000000( 00010000 
1111 0010 0101 0100 1100 000100100000000000000000000000( 00000001 
0101 1010 1100 1010 1100 000000001000000000000000000000( 00010000 
0101 0101 1111 0100 1100 000000000000000000000000000000( 00011000 
1111 0010 0100 1100 1100 000100000000000000000000000100( 00000110 
0101 0010 1111 0100 1100 000000001100001000000000000000( 00010000 
1111 1000 1111 1000 1100 000100000000000000000000000100( 00000000 
1111 0010 1100 1111 1111 000010000000000001000000001000( 00000001 
1111 0100 1000 0010 1100 100010010100001010010000000000000000000 
1111 1000 0001 1010 1100 000000101000100101100000000000001100000 
1111 0100 0010 0001 1100 1010101101100000000001000000001'00000000 
1111 1111 1111 1111 0100 000000000000000000000000100001000000000 
1111 1010 1010 1000 1100 000100100000000001100000000100001100000 
1111 1010 1100 1010 1100 000000100000000101100000000000001100000 
1111 0010 0001 1010 1100 000000010000110100100010000000001101010 
1111 0011 1111 0001 1100 000010010100001000000000000000000000000 
0101 1010 1010 1010 1100 000000001100001100000000000000000010101 
1111 0100 0101 0011 1100 000000111000010000100010000000000000010 
1111 0100 1100 0001 1100 100010111100001000011000000000000000000 
1111 0001 1010 1000 1100 110010010100001010011100000000010000000 
1111 0100 0010 1010 1100 110010111100001000000100000000100000000 
1111 0001 1111 0010 1100 110010010100011010001010000000100000010 
1010 1111 1111 1111 1111 000000001100001100000000000000000001111 
1111 1010 0011 0100 1100 100011000101111000000010000100000001010 
1111 1000 1100 0100 1100 100011010101111000000010001000000001011 
1111 1000 0101 0100 1100 010000111000000000111101001110100000101 
1111 0011 1111 0101 1100 110001000001010000111100000010100000000 
1100 1111 1111 1111 1111 101101111111110100000000000000000000000 
1111 1111 1010 0100 1111 010000101000100000111101000110100001100 
1111 0101 0010 1111 1100 000001000001110000111011001110000001111 
1111 0101 1000 1111 1100 010001000001110000100111001110100001111 
1111 1010 1010 0010 1100 110011100001100001111101001110101101000 
1111 0001 0100 1000 1100 110011010101111001111101001110100001111 
1111 1010 1111 1000 1100 110011000101011000011101111001100000111 
1111 1111 0101 0011 1100 110011000101101000011101001110100001101 
1111 0101 0101 0101 1100 010011101001110000111111001110100000111 
1111 0101 0001 1000 1100 110011010101111000111111001110100001111 
1111 0100 1100 1000 1100 110011111101111000111111001110100001111 
1111 1010 1111 0001 1100 110011010101111001111101001110100001111 
1111 1111 1111 0101 0011 110010101010111001111111001111100001111 
1111 1111 1111 1010 0011 110011101001111001111111001111100001111 

Table 3.5. SOAR Control PLA After Setup for Two-Bit Decoders. 
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(1 2) (3 7) (4 5) (6 8) (9 10) Outputs 

0101 1111 0010 0100 1100 000000000000000000000000000000~00010010 
0101 0111 1111 0100 1100 000000001000000000000000000000 00010000 
0101 0010 1110 1010 1100 000000001100001000000000000000C 00010100 
1111 0001 0101 0010 1100 000000000000000000010100001000C 00000001 
0101 1000 1111 1010 1100 000000001100001100000000000000C 00010101 
1111 0100 0010 0001 1100 1010101101100000000001000000001 00000000 
1111 1111 1111 1111 0100 000000000000000000000000100001C 00000000 
1111 0100 1000 0010 1100 110010010100001010010000000000C 00000000 
1111 0010 1100 0100 1100 1000100001000010010000000010000 00000101 
1111 1000 0001 1010 1100 0000101000001000011101000010000 01100000 
1111 1010 0011 0100 1100 1000100011001010000000100000000 00001000 
1111 0001 1111 0001 1100 0000100101000010000101000000000 00000000 
1111 0001 1111 0010 1100 0000100101000110100000100000000 00000010 
1111 0100 0010 1010 1100 1100101111000010000001000000001 ~0000000 
1111 0001 1010 1000 1100 1100100101000010100111000000000 10000000 
1010 1111 1111 1111 1111 0000000011000011000000000000000b0001111 
1100 1111 1111 1111 1111 101101111111110100000000000000000000000 
1111 0010 0101 0100 1100 010101100001010000111100000110100000011 
1111 1000 1101 0100 1100 000010111100011000110110001000000000011 
1111 1001 1111 0111 1100 110001000001100000001001000110100001100 
1111 0101 0010 1111 1100 000001000001110000111011001110000001111 
1111 0101 1000 1111 1100 000001000001110000100111001110100001111 
1111 1111 1010 0100 1100 010001100001110000111101000110100001100 
1111 1000 1111 1000 1100 110111100001010001111101111101101100010 
1111 0010 1110 1000 1100 110111100001010101111101111101101100011 
1111 1010 1110 0010 1100 110011100001100101111101001110101101001 
1111 0001 0100 1000 1100 110011010101111001111101001110100001111 
1111 0010 0001 1000 1100 110011010101111100111111111001101101111 
1111 0101 0101 0101 1100 010011101001110000111111001110100001111 
1111 0010 0001 0010 1100 110011010101111100111111001110101101111 
1111 0101 0001 1001 1100 110011010101111000111111001110100001111 
1111 1111 1111 0101 0011 110010101010111001111111001111100001111 
1111 0100 0101 0010 1100 110011111101111000111111001110100001111 
1111 0100 1100 1001 1100 110011111101111000111111001110100001111 
1111 1010 1111 0001 1100 110011010101111001111101001110100001111 
1111 1111 1111 1010 0011 110011101001111001111111001111100001111 

Table 3.6. SOAR Control PLA After Minimization With Decoders 
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3.4. Optimal Encoding of the Inputs of a PLA 

The input encoding problem can be stated as follows: 

Input Encoding Problem: Given a set of symbols si = s 1· s2, ... 'Sp } and Ia Boolean 

function: 

find an encoding of the symbols into binary vectors that minimizes the number of product 

terms needed to represent the function in two-level. sum-of-products form. 

Remark: The problem with n binary inputs, 1 symbolic input and m outputs (.:an easily 
I 
! 

be extended to consider any number of symbolic inputs. I 

It has been shown [De83] that this problem can be solved by performing a !multiple-

valued minimization of the function f (where Si is represented by a single multiple-

valued variable with p values). and then solving an encoding problem which maps the 

result of the multiple-valued minimization into binary vectors for each symbol. The input 

encoding problem has been used as an approximation to the state-assignment problem 

[DBS85] where the set S; is the set of states, and the function f defines the output func-

tions as a function of the binary inputs and the present state. Note that in this approxi-

mation, the effect of the encoding on the next-state function is ignored. 

As an example of an input encoding problem. I consider the problem of optimal 

assignment of opcodes for a simple microprocessor. The Table 3.7 shows the decode logic 

for the microprocessor with the opcodes in symbolic form. There are two inputs (besides 

the opcode). and 5 outputs. 
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in 1 in 2 opcode outputs 
0 0 ADD 10101 
0 1 ADD 01100 
1 0 ADD 01010 
1 1 ADD 10100 
0 0 SUB 10111 
0 1 SUB 01010 
1 0 SUB 01100 
1 1 SUB 10100 
0 - LOAD 11010 
- 0 LOAD 01000 
0 0 STORE 11100 
0 1 STORE 01110 
1 0 STORE 01100 
1 1 STORE 01110 

Table 3. 7. Microprocessor Decode Logic. 

Translating this into a multiple-valued minimization, the problem has four variables 

- the first two variables are binary-valued, the third variable has 4 values. and the fourth 

variable has 5 values. Translating each product term results in Table 3.8. Note that. for 

the binary valued variables. a 0 in Table 3.7 corresponds to 10 in Table 3.8, and a 1 in 

Table 3. 7 corresponds to 01 in Table 3.8. Also. the four values of the third variable 

represent ADD. SUB, LOAD and STORE respectively. 

10-10-1000-10101 
10-01-1000-01100 
01-10-1000-01010 
01-01-1000-10100 
10-10-0100-10111 
10-01-0100-01010 
01-10-0100-01100 
01-01-0100-10100 
10-11-0010-11010 
11-10-0010-01000 
10-1 0-000 1-11100 
10-01-0001-01110 
01-10-0001-01100 
01-01-0001-01110 

Table 3.8. Multiple-valued version of decode logic. 

The results of the multiple-valued minimization are shown in Table 3.9. 
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01-01-1100-10100 
10-10-1100-10101 
01-10-0101-01100 
11-10-0011-01000 
01-10-1000-01010 
10-01-1000-01100 
10-01-0100-01000 
10-11-0100-00010 
10-11-0010-11010 
10-10-0001-10100 
11-01-0001-01110 

*(ADD. SUB) 
*(ADD. SUB) 
* (SUB. STORE) 
* (LOAD. STORE) 

Table 3.9. Microprocessor Decode after Minimization. 
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A constraint is generated for each term with 2 or more values in the symbolic vari-

able. The constraints (ADD. SUB). (SUB. STORE). (LOAD. STORE) can be satisfied with 

the embedding ADD = 01. SUB = 11. LOAD = 00, and STORE = 10. This embedding 

satisfies the requirement that each constraint can be represented by a single cube: 

ADD. SUB -1 
SUB. STORE 1-
LOAD. STORE -0 

Minimizing with this assignment gives the PLA shown in Table 3.10. Note that the 

product terms are not identical in form to the multiple-valued minimization because the 

procedure MAKE_SP ARSE has selected implicants which minimize the number of transis-

tors in the PLA (as described in Section 4.8). If the embedding is exact in the sense that 

all of the constraints are satisfied. then the number of product terms should not change 

after the embedding is performed. To assist in analyzing this example, the differences have 

been noted in the table. 
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input output comments 
11-1 10100 
00-1 10101 
101- 01100 
-0-0 01000 
1001 01010 
-101 00100 variable 1 raised. variable 5 lowered 
01-- 01000 variable 3 raised. variable 4 raised 
0-11 00010 
0-00 10010 variable 5 lowered 
001- 10100 variable 4 raised 
-110 01110 

Table 3.10. Microprocessor Decode PLA 

3.5. Optimal Encoding of the Outputs of a PLA 

The last optimization problem I consider is the out put encoding problem: 

Output Encoding Problem: Given a set of symbols so= { * } U { s 1 • s 2 • · · · • sp } and 

a Boolean function f 

f : { 0.1 } n -+ so 

find an encoding of the symbols of so (as binary vectors) that minimizes the number of 

product terms needed to represent the function in two-level. sum-of-products form. The 

value"*" designates input conditions for which the value of the output is a don't-care. 

Remark. 1: The extension of this problem to consider any number of symbolic outputs is 

straight[ orward. 

Remark 2: The output encoding problem. while very similar in form to the input encoding 

problem. is a much more difficult problem. This problem has been addressed with Sym-

bolic Minimization [De85] which seeks to minimize a multiple-valued input. multiple-

valued output function in a code-independent manner. This is still an active area of 

research. 

As a practical example of an output encoding problem, I consider the design of a sub-

circuit of a high speed division circuit [Tay81]. Ann -bit divider accepts ann -bit dividend 

r and an n -bit divisor d and produces an n -bit quotient q . (Assume that the +dix point 

for both dividend and divisor are to the immediate left of the numbers.) A divider is 
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typically built as a sequential circuit which requires n clock transitions to pitoduce the 

quotient. During each clock transition. either d or -d is added to r producing ione bit of 

the quotient, d is shifted 1 position to the right. and the process is repeated n times. This 

technique is called radix-2 division. 

However. a faster division circuit can be built if the dividend is shifted 2 positions 

each clock transition. This is referred to as radix-4 division [Tay81]. In each clqck transi-
i 

tion of radix-4 division. one of d. 2d. -d. -2d. or 0 is added to the dividen~. (Com-

puting ±2d is easily done with a shift of the divisor.) The divisor is then shiftd 2 posi-

tions to the right. and the process is repeated i- times. I 

An important subcircuit in the design of a radix-4 divisor is the shift-Aze circuit 

which determines whether to add d. 2d. -d. -2d. or 0 to the dividend. This circuit 

examines a fixed number of leading bits of the dividend and divisor and determines the 

proper value to be added to the dividend. Whether to add or subtract can be determined 

from the sign of the dividend, but the decision to use 0. d. or 2d requires a nontrivial 

amount of hardware. An important consideration in the design of the shift-size circuit is 

that many combinations of leading bits for the divisor and dividend cannot appear in any 

step of the division algorithm. 

I concentrate now on the optimization of the shift-size circuit. The shift-size circuit 

is a function: 

where the values Q0 • Q 1• and Q2 represent the decision to add 0. d. or 2d respectively 

based on the leading bits of the dividend and divisor. The value "*'' is specified for input 

combinations which are known not to occur. 

For the shift-size circuit considered here. there are 11 binary inputs and 3! symbolic 

outputs. Using a minimum bit encoding for the output, there are four values 0, ~· 2. 3 (or 

00, 01. 10. 11 in binary) to assign to the three symbols. There are 4 P 3 = 2~ different 

assignments of the values to the symbols. However. not all of these result in different 
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minimization problems. In Table 3.11. the twelve unique encodings are enumer4ted. Also 

shown in the table are the results of an exact minimization of the function under each 

assignment. 

Qo Q1 Q2 terms comment 
0 1 2 43 (same as 0 2 1) 
0 1 3 26 (same as 0 2 3) 
0 3 1 26 (same as 0 3 2) 
1 0 2 26 (same as 2 0 1) 
1 0 3 26 (same as 2 0 3) 
1 2 0 29 (same as 2 1 0) 
1 2 3 30 (same as 2 1 3) 
1 3 0 27 (same as 2 3 0) 
1 3 2 27 (same as 2 3 1) 
3 0 1 26 (same as 3 0 2) 
3 1 0 * 25 (same as 3 2 0) 
3 1 2 44 (same as 3 2 1) 

Table 3.11. Shift-size Circuit With Different Output Encodings. 

The two output bits from this circuit are referred to as 0 1 and 0 2. The assignments 

Q 0= 00, Q 1= 01. Q 2= 10 and Q 0= 00, Q 1= 10. Q 2= 01 are equivalent because they result in 

a swap of the functions 0 1 and 0 2 . 

The results show that the assignment of Q0= 11. Q 1= 01, Q2= 00 is optimal for this 

circuit. Also. there is almost a 2:1 ratio in the number of terms needed to implement the 

function based on the encoding chosen. 

There is a close relationship between output encoding and the output phase assign-

ment problem. A simple analysis in this example shows that by enumerating all possible 

output encodings. we have also considered all possible phase assignments for each of the 

encodings. For example. the assignment Q 0 = 00, Q 1 = 01, Q 2 = 10 with the second output 

complemented is equivalent to the assignment Q 0 = 01. Q 1 = 00, Q 2= 11. 
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CHAPTER 4 

The Espresso-MV Minimization Algorithms 

The Espresso-MY strategy for mm1m1zmg multiple-valued functions is i~entical to 

strategy employed by Espresso-II (and Espresso-IIC) for multiple-output !functions. 

Figure 4.1 shows an overview of the strategy. I briefly explain here the purpose of each 

step in the algorithm. Later in the chapter each procedure will be explained in more detail. 

including the extensions of the procedures for multiple-valued functions. 

The first step performed by Espresso-MY is to read the function provided by the user 

and split the function into a cover of the ON-set. a cover of the OFF-set. and a cover of 

the DC-set. Espresso-MY requires all three covers. The user is allowed to specify a 

multiple-valued function by providing any two of these three covers. and Espresso-MY 

will use the COMPLEMENT procedure to compute the missing cover. 

The inner loop of the Espresso-MY strategy consists of reducing the implicants to 

nonprime cubes. expanding the cubes to prime implicants. and extracting a minimal subset 

of the prime implicants. This scheme is iterated (using REDUCE) until there is no further 

reduction in the number of cubes in the function. 

When the solution stabilizes. the LAST_GASP strategy performs the reduction and 

expansion in slightly different manner in an attempt to get past a local minimum. 

One interesting variant added in Espresso-MY is the routine SUPER_GASP. This pro-

cedure is used optionally instead of LAST_GASP to expend more effort in finding a better 

solution. 

Here are the main procedures employed by Espresso-MY: 

COMPLEMENT 

§4 

Returns a representation of the complement of a multiple-va+ed func

tion. This procedure is used by the setup routine to compute al cover for 

the ON-set, the OFF-set and the DC-set (when one of these is not 

43 
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EXPAND 

44 

provided by the user). EXPAND is the only routine which r~quires the 

OFF-set; the remaining routines use only the ON-set and DC-sel 
i 

Replaces each cube in the cover F with a prime cube which ~overs the 

cube. Heuristics guide the selection of a single prime from ~11 of the 

primes which cover the cube. 

IRREDUNDANT Extmcts from the cover F a minimal subcover which is still s~flicient to 

represent the function. A key component of this procedure is +e routine 

TAUTOLOGY which tests whether a function is 1 for all possi~le inputs, 

ESSENTIAL 

REDUCE 

LAST_GASP 

and the routine FIND_TAUTOLOGY which returns a list of the ways that 

cubes can be removed from a function in order to prevent th¢ function 

from being a tautology. 

Identifies which prime cubes in the cover are essential primes. An essen-

tial prime must be in any cover of the function, and hence th¢ essential 

primes can be set aside before entering the iterative part of the algorithm. 

Replaces each cube in the cover F with the smallest cube contained in the 

cube which is necessary to still represent the same function. trhe cubes 

are processed one at a time. and so the algorithm is sensitive tol the order 

in which the cubes are processed. 

An alternate REDUCE, EXPAND, IRREDUNDANT iteration performed in a 

different manner in an attempt to achieve a better solution. The step 

replaces each prime cube in the cover F with the maximal reductiion of the 

cube (independent of the order in which the cubes are processed), and 

then these cubes are expanded in an attempt to cover other maximally 

reduced cubes. If any maximally reduced cubes cover other maximally 

reduced cubes, the resulting primes are added to the cover, fo]lowed by 

IRREDUNDANT to select those that are useful for reducing the 1ize of the 

function. , 
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SUPER_GASP Similar to LAST_GASP. but. instead of using EXPAND to expandl the maxi-

mally reduced cubes. all prime implicants which contain each :inaximally 

reduced cube are used. IRREDUNDANT then selects a minimal s-(.Ibcover of 

this large cover of prime implicants. 

MAKE_SPARSE Iterates over the cover attempting to reduce the total count of transistors 

VERIFY 

a 

needed in a PLA form of the function. The main compdnents are 

LOWER_SPARSE which reduces the cubes in variables which ~re desired 

sparse. and RAISE_DENSE which expands the cubes in variableslwhich are 

desired dense. i 

This ;, u»ed as a verification of the Espre"o-MV program. ~hen the 

minimization is finished. VERIFY performs a logical equivalende between 

the original cover and the minimized cover to verify that the function has 

not been corrupted. If Fold is the original function. F is the minimized 

function. and D is the don "t-care set. then check that Fold C F U D and 

F C Fozd UD. 
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I* Espresso-MV- minimize a multiple-valued Boolean function 

*I 

F refers to the ON-set of the function 
D refers to the DC-set of the function 
R refers to the OFF-set of the function 

cost ( F) first considers the number of cubes in F. 
and then the number of literals to implement F. 

es presso(F. D) 
{ 

Fold +-- F; 
R +--COMPLEMENT (F +D); 

F +--EXPAND (F. R); 
F +-- IRREDUNDANT (F. D); 

E +--ESSENTIAL (F. D); 
F +--F-E; 
D +-- D + E; 

do { 
¢>2+-- cost(F); 

I* Save original cover for verificatioh *I 
I* Compute the complement *I 

I* Initial expansion *I 
I* Initial irredundant *I 

I* Detect essential primes* I 
I* Remove essentials from F *I 
I* Add essentials to D *I 

I* Repeat inner loop until solution becomes stable *I 
do { 

¢1+--IFI; 
F +--REDUCE (F. D); 
F +--EXPAND (F. R); 
F +-- IRREDUNDANT (F. D); 

} while ( IF I < ¢!); 

I* Perturb solution to see if we can continue to iterate *I 
G +--LAST _GASP (F. D. R); 

} while (cost(F) < ¢>2); 

F +-- F + E; 
D +--D-E; 

F +-- MAKE_SPARSE (F. D. R); 

if(! VERIFY (F. D. Fold)) 
exitC"verify error"); 

return F; 

I* Return essential to F *I 

I* Make the solution sparse *I 

Figure 4.1. The Espresso-MY main algorithm. 
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4.1. TAUTOLOGY 

Multiple-valued tautology is an important step in many heuristic minimiz.tion algo-

rithms [Sas84a]. In this section. we will describe the algorithm used by Espres$o-MV for 

determining if a function is a tautology. 

A well known result [BMH84. Sas84a] is the following: 

Proposition 4.1.1: A cover F contains a cube c if and only if Fe is a tautology. 

Hence. multiple-valued tautology can be used to determine if a cover cont~ins a cube 

(i.e .. the cover contains all of the minterms of the cube). This can be used toi expand a 

cube into a prime implicant [Sas84a. Theorem 5.1]. to detect redundant cubes in a cover 

[Sas84a. Theorem 5.2]. and to detect essential primes in a cover of prime implicants 

[Sas84a. Theorem 5.3]. Although we choose to use the complement of the function to 

expand a cube into a prime implicant. multiple-valued tautology is used in Espre$so-MV to 

extract an irredundant subcover from a cover. and to detect essential primes in a cover. 

The tautology question for a multiple-valued function is NP-complete implying that 

there is little hope of finding a polynomial-time algorithm to solve the problem. However. 

in practice. we find that the run-time of the tautology algorithm accounts for only a small 

fraction of the time for Espresso-MY. We will use the Generalized Shannon Cofactor 

described in Chapter 2 to recursively divide the function into simpler functions which are 

examined for tautology. 

Proposition 4.1.2: [Sas84a. Lemma 3.3]. If a set of cubes c;. i = 1 · · · m satisfies 

m 

U c; = 1 and c; n cj = 0 fori :;C j then F is a tautology if. and only if. each of Fe; is a 
i = 1 

tautology fori= 1 · · · m 

To reduce the complexity of answering the tautology question. we will us~ the pro

perties of weakly-unate functions proven in Chapter 2. Using Proposition 2.~ we can 

' 
always reduce the size of the problem if there are any weakly-unate variables. 
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4.1.1. Special Cases 

Before we split the function, we first check a set of special cases: 

(1) If the cover has a row of all 1's (i.e .. contains a universal cube)~ then the 

function is a tautology. I 

I 
(2) If the cover has a column of all o·s. then the function is not a tauto~ogy. 

i 

(3) If the function is weakly unate, then the function is not a tautolo~y because 

we did not identify a row of l's in case (1); 

( 4) If there are any weakly-unate variables. then cubes of F which atte not full 

in the unate variable are discarded according to Proposition 2.6. At this 

point, we return to case (1) to continue checking the reduced function. 

(5) If the cover H can be written as A U B where A and B are defined over dis-

joint variable sets. then F is a tautology if and only if either A or B is a tau-

tology. This case can be detected by finding a row and column permutation 

ofF resulting in a matrix of the form: 

where 1 represents an appropriately sized block of all 1's (and the division 

does not split a variable between the two halves). Such a partition can be 

easily detected with a simple greedy algorithm. However, in practice, such a 

decomposition may not occur often. and hence should only be checked for in 

the case that the matrix contains many l's. 

If none of these special cases apply. then two cubes c 1 and c 2 are chosen (asdescribed 

in Section 2.3) as a partition of a heuristically selected splitting variable, and then each of 

Fc 1 and Fc 2 are checked recursively for tautology. The function is a tautology oqly if each 

of the two cofactors is a tautology. 
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4.2. COMPLEMENT 

COMPLEMENT computes the complement of a multiple-valued functiop. In the 
I 

Espresso-MY algorithms, the complement of a function is used by the EXPAND jprocedure. 

Also, COMPLEMENT is used to determine the DC-set of a function if Espresso-J\fY is given 

only the ON-set and OFF-set for the function. 

The complement of a multiple-valued function is computed using the Generalized 

Shannon Expansion via the following proposition [Sas83, Lemma 3.2]: 

Proposition 4.2.1: Let ci, i = 1 · · · m be a set of cubes satisfying 

c ; n c j = 0 for i ~ j . Then, 

m 

F= u C; nFc 
I 

i= 1 

m 

U c = 1 and 
i= 1 

In Espresso-MY, a splitting variable X;, and a partition the values of the variable 

into two halves c 1 and c 2 is selected. Half of the values of X; are placed in c 1 and the 

remaining half are placed in c 2. The complement of the function is computed recursively 

for each of Fc 1 and Fc 2 , and the complement ofF is [c 1 nFc 1 ) U [c 2 nFc 2 ). The pro-

cedure complement_merge is used to reduce the number of terms in F. 

4.2.1. Merging the Complement 

Merging is the process of forming the union of Fe 1 and Fc 2 in such a "j.vay as to 
I 

minimize the number of terms in the union. The merge step can be viewed as ~ heuristic 

minimization algorithm that attempts to minimize the number of terms in the complement 

of the function while the complement is being computed. 

If the same cubed appears in both Fc 1 and Fc 2 then the relation 

replaces the two cubes with the single cube d . 

An expansion of the splitting variable is also attempted using one of two algorithms: 
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Algorithm 1: 

Check. for each cube dE Fc~o whether it is contained by Fe 2 • If o. use the 

relation 

[ c 1 n d I u [ c 
2 n Fe 21 = [ ( c 

1 u c 
2

) n d I u [ c 
2 

n Fe 21 

to raise the values of c 2 in d (i.e., replace c 1 nd with supercube(c nd, c 2
).) 

The condition d C Fe 2 can be checked in three ways: 

(a) Check if any single cube of Fe 2 contains d; if so, d C Fe 2 • Hence, a 

single-cube containment check can be used although it may iss some 

possible lifting of parts. 

(b) Determine if F 2 is a tautology. In general. the complex· y of this 
c d 

alternative rules it out. 

(c) Check if (c 1 Uc 2)nd does not intersect F; if this is 

empty. then d C F 2• 
e 

The condition of Algorithm 1b and 1c is stronger than the single-cube containment 

of Algorithm 1a because it detects multiple-cube containment. 

Algorithm 2: 

Check. for each cubed E F 1, whether d is distance-1 from a cube f E F. If 
e 

so, the parts of f which are a 1 may not be raised in d (i.e .. they must 

remain 0). Any parts of d which are not forced to be 0 by some cube f E F 

may be raised. 

Both of these algorithms are symmetric in that the procedure is repeated for !the cubes 

Remark 1: Because the cubes have been sorted in order to remove the duplicat$ between 

the two lists. the complexity of Algorithm 1a can be reduced by roughly a fact~r of 2 by 

i 
checking only the cubes of Fe 2 which are larger than d to see if they contain d. I 
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Remark 2: Algorithms la and 1 b either raise all of the parts in the splitting tariable or 

none of the parts. (This is the same technique as used by Espresso-II for mjerging the 

results of the complement.) However, Algorithm 2 allows individual parts of a 1cube to be 

raised, and is able to determine precisely which parts can be raised. and which 1 cannot be 

raised. In fact, if the cubes of c 1 n F 1 and c 2 n F 2 are prime implicants, then! the cover 
c c 

resulting from applying Algorithm 2 will consist of prime implicants. Each leaf of the 

recursion in COMPLEMENT produces only prime implicants. Hence, by induction. the final 

cover returned by COMPLEMENT will consist of only prime implicants. 

Remark 3: Algorithm 2 is using a technique similar to that used by EXPAND to ,determine 

essentially raised and essentially lowered parts (as described in Section 4.3.2). eiXcept that 

a cube of the OFF-set is being expanded against the cubes of the ON-set. 

Algorithm 2 is a more powerful merging algorithm. and will. in general. yield a 

smaller representation of the complement than either Algorithm la or Algolrithm lb. 

Assuming that the complexity of Algorithm la is approximately 0.51 Fc 1 1 I Fc 2 1, and that 

of Algorithm 2 is approximately (IF 1 I+ IF 2 1) IF I. the following heuristic is used. If: 
c c 

use Algorithm 2 to raise the parts in the splitting variable; otherwise. use Algorithm la. 

Algorithm 2 is favored (by a factor of two) because it has the possibility of generating a 

smaller representation of the complement (which improves the performante of the 

EXPAND procedure). 

Note that. as mentioned in Section 2.5, if the same variable is selected for splitting 

until all cubes in the cover are independent of that variable. then the leaves will be the 

functions Fx < 01 , Fx < 11 ... Fx < P;-t}. Hence, in this case. the technique of splitting the 

parts in half provides a natural binary tree for performing the merge operation. 
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4.2.2. Special Cases 

As usual. a set of special cases are checked before the function is split by t+ General
! 

ized Shannon Cofactor. In the case of COMPLEMENT the special cases are: ' 

(1) If there are no cubes in the cover (i.e .. the cover is empty). then the complement is 

the universe: if there is row of all l's in the cover (i.e., the cover contains d universal 

cube) then the complement is empty: 

I 
(2) If there is only a single cube in the cover. compute the complement! using De 

Morgan's law as described in Chapter 2. 

(3) If the matrix of F contains a column of all o·s. form the cube c which has a 0 in a 

column which is all o·s. and a 1 in all other positions. Then, F = c nFe. and 

F = c U Fe. Hence, recursively compute the complement of Fe and return the union 

of Fe and the complement of the single cube c. 

(4) If all cubes of F depend on only a single variable. then the function is a tautology 

(because there were no columns of O's detected in the previous step. the function 

must be a tautology if it depends on only a single variable) and hence the comple-

ment is empty. 

If none of these special cases apply. the function is split into two pieces. and the com-

plt·ment is computed recursively. 

4.3. EXPAND 

The EXPAND procedure examines each cube c E F (where F is a cover of the ON-set 

of the binary function f ) and replaces c with a prime implicant d with c!:: d. If c is 

not prime, then d covers more minterms of F than c does and hence is it said that c has 

expanded into a larger cube. If c is known to be prime from a previous expansion. then 

there is no reason to attempt to expand c. Note that each c is replaced with a si,gle prime 

implicant d (out of all of the possible prime implicants which cover c) so that tl' e number 

of cubes in the cover can never increase during the EXPAND step. 
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The goal for the minimization program is to minimize the number of c1bes in F. 

There are several criteria that can be used in the EXPAND procedure to achiev~ this goal. 

For example. Espresso-II defines an optimally expanded prime as a primed for wlltich: 

(a) d covers the largest number of cubes of F, and 

(b) among all cubes d which cover the same number of cubes ofF, d covers the 

largest number of minterms of F. 

Condition (a) is a local statement of the minimization objective. and conlctition (b) 

expresses the condition that ties be broken by covering as many minterms ofF +possible. 

I 

By enumerating all primes d ~ c, it is trivial to choose an optimally expan~ed prime 

to replace c. Although a technique for enumerating all of these primes is presooted here. 

this can be prohibitively expensive. Ot is possible that this would generate all of the 

prime implicants of the function - something clearly to be avoided.) For these reasons, 

Espresso-MV does not rely on generating all of these primes. 

One strategy employed by some heuristic minimization programs for expanding an 

implicant into a prime implicant is to scan the cube from left to right and a:ttempt to 

change each part of the cube which is 0 into a 1. To test whether this expansion is legal. 

one can test either 

( 1) that the ON-set of the function still covers the cube after the 1expansion 

[BaM85, Sim83]. or 

(2) that the expanded cube does not intersect any cube in the OFF-set of the 

function [Rot80]. 

If the expansion is legal, then the cube is expanded in the particular part. In either case. 

the algorithm then proceeds to the next part in the cube. The problem experienced with 

this simple expansion strategy is that the resulting prime implicant depends strongly on 

the order in which the parts are raised. We have seen examples where the fin~l solution 
I 
I 

returned by a minimization algorithm (using this simpler heuristic for expansidn) can be 

several times larger than the optimum solution. Also, these simpler algorithms fail to take 



§ 4.3 54 

the most important condition (a) into account (which is to reduce the size of the icover ). 

MINI [HC074] recognized the importance of choosing the order in which 'to expand 

the parts. MINI orders the variables, and then maximally expands each variabl~ according 

to this ordering. The order is chosen in an attempt to expand the parts to cpver other 

cubes of F, but this was not guaranteed. 
i 

Espresso-11 and Espresso-MY expend more effort in choosing a good set 9f parts to 

raise so as to achieve the minimization objective (which is to reduce the number tf cubes in 

the cover). In particular. Espresso-MY first guarantees that if it is possible for the cardi

nality of F to decrease in a single EXPAND operation. that it will. In ad¥tion, the 
I 

EXPAND operation is able to consider all of the prime implicants which cover a c~be. 
I 

4.3.1. EXPAND Cube Ordering 

The expansion process is loosely cube-order dependent; the order in which the cubes 

are expanded influences the final result. The same strategy as used in MINI is used 

[HC074. ORDF1-0RDF3] for ordering the cubes prior to expansion (namely. to compute a 

weight for each cube as the inner product of the cube with the column sums of F, and 

then sort the cubes into ascending order based on the weights). This heuristic attempts to 

expand cubes first which are unlikely to be covered by other cubes. 

The cube-order dependency comes about in the heuristics which are used to expand a 

cube into a prime. These heuristics look to expand a cube so as to cover cubes which fol-

low the cube in the cover (any cube which has been expanded before the currelnt cube is 

already prime. and hence the current cube cannot expand so as to cover the cube). Also. if 

a cube becomes covered by the expansion of some earlier cube in the cover. then ~he cube is 

not expanded (because all of its minterms are already covered). Experiments have shown 

that the order in which the cubes are processed can affect the outcome of a single EXPAND 

operation. but. for the Espresso-MY running on a large set of test examples. th~ order in 
' 

which the cubes are processed appears to matter very little. In fact, the use of Ia random 

cube-order (rather than the MINI heuristic) produced results nearly identical in lboth time 
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and optimality of solution. For this reason. the EXPAND operation is said to jbe loosely 

cube-order dependent. 

4.3.2. Blocking Matrix and Covering Matrix 

Espresso-11 [BMH84] introduced the concepts of the blocking matrix and t~e covering 

matrix, and then used these matrices to guide the expansion of a cube into a prime. The 

blocking matrix is derived from the OFF-set by ensuring that each cube of the OFF-set has 

only a single 1 in the output part. (This operation is referred to as unraveling the output 

part.) The covering matrix is derived from the ON-set. 

Espresso-MY views the problem a little differently. and uses the ON-set and OFF-set 

directly to guide the expansion of a cube into a prime. The actual operations performed 

are very similar in the case of multiple-output functions. Thus. the technique used by 

Espresso-MY merely provides a different way of explaining the techniques used by 

Espresso-11. 

The blocking matrix is less convenient for the case of multiple-valued functions 

because the size of the blocking matrix can become very large. A direct extenSiion of the 

blocking matrix to multiple-valued functions requires unraveling each multiple-valued 

variable (i.e., each cube in the OFF-set which depends on variable X; to have only a single 

1 in the literal of X;). The number of rows in the blocking matrix can become very large 

- a single cube r of the OFF-set of ann -variable function expands into 

n 

II lr; I 
i= 1 

r1 "¢ f~ll 

rows in the blocking matrix (where I r; I equals the number of 1's in variable i df the cube 

r ). This is clearly unacceptable. so we seek to avoid forming the blocking matrijx if possi

ble. I present here a new explanation of why it was necessary for Espresso-11 to unravel 
i 

the OFF-set to form the blocking matrix, and show how Espresso-MY can avoif doing so 

until the very last step of the expansion process (and. in many cases. complete!~ avoid the 

unraveling of the multiple-valued variables). 
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4.3.3. Expansion of a Single Cube 

I now describe the expansion process in detail. Recall that the Boolean funhion being 

minimized is f . and a cover of the ON-set of the function is given by F. We ~ssume we 

have access to a cover of the OFF-set of the function (which we call R ). and trat we are 

given a single cube c E F which we wish to expand. Initially. each part of tihe cube c 

which is not already a 1 belongs to the set of free parts which is denoted free. As the 

algorithm progresses. parts are removed from free. and some of these parts are added to 

c. The algorithm terminates when free is empty. and at that point c is a prime cube. As 

a matter of terminology. when a part of c is changed from a 0 into a 1. the part is said to 

be raised or expanded. 

Before proceeding. we first define two terms: 

Definition: At each step of the algorithm. the overexpanded cube of c is the cube which 

results from simultaneously raising all parts of free. Initially. the overexpanded cube is 

the universe. 

Definition: For any f E F. the expansion of c which covers f is the smallest cube con-

taining both f and c (i.e .. supercube (c .f )). f is said to be feasibly covered if 

supercube (c .f ) is an implicant of F. 

Of course. all feasibly covered cubes ofF are covered by the overexpanded cube of c. 

but it is possible that some cube which is covered by the overexpanded cube of c may not 

be feasibly covered (precisely because to cover the cube would force c to int~rsect R ). 

Also. initially. all parts are free so that the overexpanded cube of c is the univetse. How-

ever. as parts are removed from free. the overexpanded cube changes reflecting that only 

the parts of free can be raised. 
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Expansion Algorithm Overview: 

(1) (Determination of essential parts): Determine which parts can nevet be raised 

and remove these from free. and determine which parts can alway~ be raised 

and raise these parts of c. Exactly how this is done will be explaimtd later. 

(2) (Detection of feasibly covered cubes): If there are feasibly covered cpbes in F. 
I 

expand c to cover one of the feasibly covered cubes by adding part~ to c and 
i 

removing these parts from free. After each such expansion. chec~ again for 
i 

parts which can never be raised. and parts which can always lbe raised. 

Repeat Step 2 as long as there are feasibly covered cubes in F. 

(3) (Expansion guided by the overexpanded cube): While there are cubes which 

are still covered by the overexpanded cube of c. expand c in a single part so 

as to overlap a maximum number of the cubes which are covered by the 

overexpanded cube. After expanding this part. again remove parts which can 

never be raised. and parts which can always be raised. Repeat Step 3 as long 

as there are cubes of F covered by the overexpanded cube of c. 

(4) (Finding the largest prime implicant covering the cube): When there are no 

cubes covered by the overexpanded cube of c. map the problem of maximal 

expansion of c into a covering problem whereby each minimal cover of the 

covering problem corresponds to a prime implicant which covers c. Choose. 

using some heuristic technique. a small (not necessarily minimum) cover for 

the covering problem. This minimal cover corresponds to a large (not neces-

sarily maximally large) prime implicant. 

4.3.4. Determination of Essential Parts 

This step helps us identify parts which can always be raised. parts which can never 

be raised. and helps us reduce F and R to just those cubes which will influence ~he expan-

sion of c. The goal is to reduce the complexity of the following steps. I 
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Proposition 4.3.1: If any cube e E R is distance 1 from c. then all of the p,rts of the 

conflicting variable which are 1 in e may never be raised in c. and any part thich does 

not appear in any cube r E R may always be raised in c. 

Proposition 4.3.2: If any cube r E R is distance 1 or more from the overexpand~d cube of 

c. then the cube r can be removed from R while still guaranteeing that the expabsion of c 

is an implicant of f . If any cube f E F is not covered by the overexpanded ~ube of c. 

then f is not covered by any prime containing c; hence. F can be reduced. 
i 

Therefore. Proposition 4.3.1 is used to identify parts which can never be taised and 

Proposition 4.3.2 is used to reduce the number of cubes of F and R which have !to be con-

sidered in subsequent steps. Note that any cube which is used by Proposition 4.3.1 to 

force parts out of the set free always satisfies the condition of Proposition 4.3.2 (after the 

parts are removed from the free set). and hence is immediately removed from futt"ther con-

sideration. 

After applying these two propositions. every cube of R is distance 2 or more from c. 

and every cube of R intersects the overexpanded cube of c. This is the equivallent to the 

statement that any single part of free can be raised in isolation without c intersecting R. 

and that it is not possible to simultaneously raise all the parts of free. 

4.3.5. Detection of Feasibly Covered Cubes 

A cube is feasibly covered if c can be expanded so as to cover the cube. A test to 

determine whether a cube can be feasibly covered is given by the next proposition: 

Proposition 4.3.3: A cube f E F is feasibly covered if. and only if. supercube (f . c) is 

distance 1 or more from each cube of R. 

Thus. each cube remaining in the cover F is tested for being feasibly covered (i.e .. 

only the cubes of F covered by the overexpanded cube of c are checked for bei111g feasibly 

covered.) To choose among the feasibly covered cubes. the feasibly covered cube which also 

covers the most other feasibly covered cubes is chosen. Hence. c is expanded so .. s to cover 

as many other feasibly covered cubes as possible. 
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After selecting a feasibly covered cube f to be covered. c is repliced with 

supercube (c. f ), and the parts of f are removed from the free set. Step 1 is ¢pea ted to 

find more essential parts. and then Step 2 (this step) is repeated to detect any njtore feasi-
: 

bly covered cubes. The algorithm proceeds to Step 3 when there are no mo:rje feasibly 

covered cubes. 

I 

This step allows us to guarantee that if it is possible for some expansion of a cube c 

to cover some other cube in F. then that expansion will be chosen and hence feduce the 

size of the cover. 

4.3.6. Expansion Guided by the Overexpanded Cube 

When there are no more feasibly covered cubes and while there are cubes 

covered by the overexpanded cube of c. then we select the single part of free which 

occurs in the most cubes which are covered by the overexpanded cube of c. We are 

allowed to expand c in this part because the distance between c and each cube of R is 2 or 

more. This has the goal of forcing c to overlap in as many parts as possible other cubes of 

F. After adding the part to c and removing it from free. Step 1 is repeated to detect 

essential parts and continue with Step 3 if there are cubes still covered by the overex-

panded cube of c. 

This is similar to the static ordering used by MINI as the main heuristic for expanding 

a cube into a prime implicant. The difference is that after selecting a single part to add to 

c. Espresso-MY follows all consequences of that selection (by finding parts 'tfhich can 

never be raised. and parts which can always be raised after raising the single part). Then 

the new set of cubes which are covered by the overexpanded cube are found and another 

single part is selected. Thus. in some sense. Espresso-MY defines a dynamic ordering 

which is recomputed after each selection of a part to raise. Further. this heurisltic is per-

formed only while there are no cubes which can be completely covered. but whiltt there are 

still cubes covered by the overexpanded cube of c. 
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i 

One other important difference is that, with the strategy of MINI, it is not !possible to 

reach all prime implicants containing c, even if all possible permutations of varfables were 

to be considered. This is because MINI chooses to pick a single variable, and tien expand 

maximally all of the parts in that variable before continuing to the nexf variable. 

Espresso-MY instead, chooses a single part of a single variable to expand and ~ then free 

to choose another part of a different variable. Therefore, Espresso-MY is able jo reach all 

possible primes which cover the original cube. 
I 

4.3.7. Expansion Via the Minimum Covering Problem 

In order for c to expand into an implicant of F, we must have that, after expanding. 

c be distance 1 or more from each r; E R . We can express this condition b~ writing a 
I 

Boolean expression. We let cj be a Boolean variable representing the condition tat part k 

of variable j of an expansion of c be set to 1. Also, we let (r i)} have the v~lue of 1 if 

part k of variable j of the cube ri is a 1. For any variable Xj, we can express'the condi-

tion that r i and an expansion of c be disjoint in Xj as: 

or equivalently: 

p,-1 

G;j = U (r' ) 1c' = 0 
J J 

"=0 
or, using De Morgan's law, as: 

p}-1 

G;j = n ((;:-; )j+cf) = 1 
k=O 

We stress that the values of ri written as (ri )j are known values of either 0 or l, and 

that the variables in the above equation are cf. 

To continue with the discussion, note that r i and c are disjoint if they an-e disjoint 

for some variable j. This condition is written as: 

n 

H; = U Gij = 1 
j = 1 



§ 4.3.7 61 

Finally, the expansion of c is disjoint from R only if it is disjoint from all c~bes r i E R, 

and we express this as: 

IR I 

I= n H, = 1 
i = 1 

We have a Boolean expression which expresses the condition that an assignme~t of { 0, 1} 

to the variables cf results in an implicant of I. We write this in full as: 
I 

IRI n P;-1 

I= n U n ((i=·i )f+cf) 
i=l ;=I k=O 

I 

t~ the var;-An implicant of the function I corresponds to an assignment of { 0, 1} 

abies cf which results in an implicant of I . Further, a prime implicant of I corresponds 

to an assignment of (0, 1) to the variables cf which is maximal in the sense that no other 

variable which is 0 can be made a 1; therefore, a prime implicant of I corresponds to a 

prime implicant of I . 

Proposition 4.3.4: I is a binary-valued unate function in the variables cf. 

Proof: By construction, we see that I contains only the complements of the variables cf, 

and is therefore unate. 

Proposition 4.3.5: The prime implicants of I may be obtained by expanding the product-

of-sum-of-product form into a sum-of-products form, and then performing $ingle-cube 

containment on the resulting cover. 

Proof: By proposition 3.3. 7 of [BMH84], we know that a unate, single-cube contained 

minimal cover is in fact the set of all primes of the unate function defined by the cover. 

Thus, if all cf are considered variables, Proposition 4.3.5 outlines a procedure for 

generating all of the prime implicants of a function I given a cover for its c~plement. 

If, instead, we set the values of cf to be 1 in those places where a cube c alre~y has a 1 

(and leave the variables for cf where c has a 0), Proposition 4.3.5 outlines a pr~cedure for 

.... 
generating all of the prime implicants which cover a cube c. 
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We can also modify the expression for I using De Morgan's theorem ito get the 

equivalent form: 

IRI n pl-l 

I= U n U ((ri)}cj) 
i=l j=l k=O 

Hence. we can directly write a sum-of-products expression for l and use COMP~EMENT to 

generate the sum-of-products form for I. We can identify the blocking matfix as pro

posed by Espresso-11 as a representation of the Boolean function I. The concep1 of unrav

eling the output part of each cube of the OFF-set in order to create the blocking matrix is 

equivalent to the expansion of the inner product-of-sums in the expression for l to yield a 

sum-of-product form for I. 

Thus. we have two techniques for generating all of the prime implicants ·of a func-

tion: one which involves repeated intersection of sum-of-products forms and one which 

involves the complementation of a sum-of-products form. We note here that the first for-

mulation is equivalent to the technique outlined by Roth [Rot80] for generating all of the 

prime implicants of a function. As far as we know. the second technique listed here is a 

new formulation. 

We use the form of I to discuss now how to generate the largest prime implicant 

which covers a cube c. Take the cover R and unravel each variable for which there is 

more than 1 part in the variable. (As mentioned earlier. this is equivalent to multiplying 

out the product-of-sums subexpression in I to get a single sum-of-products representation 

of /.) Let us call the resulting binary matrix R '. A binary row vector x is called a cover 

for R' if R '•xr ~(l.l.. ... or. 

Proposition 4.3.6: Each minimal cover of R ' corresponds to a prime cube in the comple-

ment of I. and a minimum cover of R' corresponds to a maximum prime impli(:ant in the 

complement of I. 

Hence. we can apply a heuristic technique (to be explained in more detail ~n Chapter 

5) to compute from R' the largest possible prime implicant which contains c. J 
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One can reasonably ask whether it would make sense to go directly to St1p 4 in the 
I 

expansion of a cube to a prime implicant. In practice this approach fails becaus~ there are 

often several largest prime implicants, and the covering problem outlines no way to select 

from among the largest prime implicants. Further. quite often a smaller prim~ implicant 
i 

may be more successful in covering other cubes of the function. It is for this +ason that 

Espresso-MY utilizes Steps 1-3 in an attempt to cover other cubes of the ON+set before 

finally expanding the cube into a large prime implicant. I 

I 4.4. IRREDUNDANT . 

The IRREDUNDANT procedure extracts from a cover a minimal subset which is still 

sufficient to cover the same function. Many minimization algorithms skip this step, prefer-

ring instead to have REDUCE detect redundant cubes. However. that approach has the 

problem of depending on the order in which the cubes are processed. One might remove a 

prime implicant which is redundant, but fail to realize that. if that prime had been left in 

the function, several other redundant primes could have been removed instead. 

As usual, we assume we have a set of cubes F which cover the ON-set of the func-

tion f , and a set of cubes D which cover the DC-set of the function f . 

The cover F is first split into the relatively essential set Er, and the relativ~ly redun-

dant set Rr. A cube c E F belongs to Er ifF U D -c fails to cover c, or c belongs toRr if 

F U D -c covers c. The set Er is relatively essential in the sense that all of the cubes of 

Er must be retained in the cover in order to still cover the same function (for if any cube 

of Er were removed from the cover. there would be some minterm which wouldn't be 

covered by the remaining cubes). 

Note that any essential prime of the function must belong to the set Er , but that the 

primes in Er need not be essential primes. An essential prime of f must apptar in any 

cover for f , whereas a relatively essential prime of F must appear in any subc<l>ver of F. 

(However, by starting with F as the set of all primes for f , then the set Er consists of 

the set of all essential primes of f .) 
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The prime implicants of R, are further divided into the totally redundan~ subset R1 

and the partially redundant subset RP . A cube c E R, belongs to R1 if E, U D c~wers c . or 

c belongs to RP if E, U D fails to cover c. The cubes of R1 are totally redun4ant in the 

sense that, because they are completely covered by the set of relatively essent~al primes. 

they can never be in a minimum subcover ofF. The cubes of RP are relatively jredundant 
I 

because. although any single cube of RP can be removed. it is not possible to fimultane-
1 

ously remove all of the cubes of RP while still maintaining a cover of f . Note trat if F is 

the set of all prime implicants, then Rp can be identified as the set of primes which are 

dominated by the set of essential prime implicants. 

What remains in R, causes the most difficulty in trying to extract a mini~um sub

cover of F. Imagine the following simple irredundant algorithm used by mant heuristic 

minimizers: for each cube c E F test whether F U D -c contains c. If so. c is redundant 

and is removed from F. Any time a cube of E, is tested. the cube cannot be removed. 

Any time a cube of R1 is tested. the cube can always be removed (regardless of the order 

in which we process the cubes). However. when a cube of RP is tested with tlhis simple 

algorithm. we may or may not remove the cube depending on the order in which the cubes 

are tested. With this simple algorithm, at least one member of RP will be removed. but 

we cannot guarantee that we will remove a maximum subset of the set RP. 

The multiple-valued tautology algorithm described earlier is used to split F into Er. 

Rr, and RP. 

The Espresso-11 (and Espresso-MV) techniques for extracting a maximal I subset of 

primes from RP is now described. Note that this algorithm becomes important only when 

there are three or more primes in RP. It is not possible for there to be only one redundant 

cube in RP (because the cube would be totally redundant). Also. the case whert there are 

only two redundant cubes in RP is uninteresting because we can always remov~ one cube 
! 

or the other (but never both ~ otherwise the cubes would be totally redundant)! 

! 
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The key in the algorithm is a simple modification of the multiple-value tautology 

algorithm. Rather than testing whether the function is a tautology. we deter ine which 

subsets of cubes in a function would have to be removed to prevent a fun tion from 

. I 
becommg a tautology. I 

Consider forming H = Er U RP -c. and using the multiple-valued tautologJ algorithm 

to determine if He is a tautology. He is a tautology because every cube of RP I is covered 
! 

by the union of Er and the remaining cubes of RP . When we get to a leaf in thd tautology 

algorithm (i.e., when we are able to determine that the function is a tautology). we exam-

ine the cubes which are in the cover at this leaf. If there is a cube from Er (or D) which 

is the universe (in this leaf). then it is not possible to avoid the function being a tautology 

in this leaf. Otherwise. all of the cubes of RP which are the universe (in this leap must be 

removed in order to avoid this leaf becoming a tautology. In terms of determining how a 

cover covers the cube. this is equivalent to saying the cover will fail to cover the cube if 

and only if all of the cubes of RP which are universal in this leaf are discarded. 

In this way. a binary matrix is formed with a cube of RP associated with each 

column. At each leaf which is a tautology (and for which no cube from Er is the univer-

sal cube). we add a row to our Boolean matrix with a 1 for each column where (RP Y is 

universal. A minimal cover of this Boolean matrix corresponds to a minimal subset of the 

primes of RP which must be retained in the cover for f . The heuristic covering algorithm 

outlined in Chapter 5 will be used to select a good minimum cover of the covering matrix. 

The algorithm proceeds by forming He for each c E RP. and calling a modified version 

of the TAUTOLOGY procedure called FIND_TAUTOLOGY. FIND_TAUTOLOGY returns a 

Boolean matrix. Note that after determining how c can be covered, c can be moiVed to the 

set Er thus improving the performance of the algorithm (because we now know how all of 

the minterms of c can be covered by selecting primes from RP ). 

We can relate the binary matrix formed in this way to the prime implica1t table of 

the Quine-McCluskey algorithm for Boolean minimization. By starting with th~ set of all 
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I 

prime implicants, the binary matrix created is a reduced form of the prime implfcant table; 

rather than each row of the matrix corresponding to a minterm of the functio~, each row 

corresponds to a collection of minterms all of which are covered by the same s~t of prime 

implicants. I 

In practice, the set RP has been observed to be small. Because the relative~y essential 

' 
and totally redundant sets are first identified, there is little overhead in this algorithm 

(compared to the simple IRREDUNDANT mentioned earlier). However, when th e are par-

tially redundant cubes, there is a much better chance of selecting a smaller su set of the 

partially redundant primes. 

This formulation of the IRREDUNDANT algorithm, including the formatiion of the 

prime implicant table and the algorithm for finding a minimum cover for the prime impli-

cant table, will be the basis for the exact minimization algorithm described in Chapter 5. 

4.5. ESSENTIAL 

Essential primes were defined in Chapter 2 as prime implicants that cover a minterm 

not covered by any other prime implicant. Because an essential prime implicant provides 

the only way of covering some minterm. all of the essential prime implicants of a function 

must be present in any prime cover for the function. There are efficient methods to detect 

those prime implicants in a cover which are essential. These essential prime imphcants can 

be removed from the function before Espresso-MY iterates over the cover, thus providing 

fewer cubes which need to be processed in the inner loop. Of course. not all functions 

have essential primes, but experience has shown that, for most functions, it •s a useful 

heuristic to detect and set aside the essential prime implicants. 

The main theorem used for detecting which primes in a cover are essentiaf is due to 

Sasao [Sas84b, Theorem A.l. Sas]: 

Theorem 4.5.1: Suppose that F can be written as G Up where p is a prime implicant of 

the function f , and G and p are disjoint. Then, p is an essential prime implicant off if. 

and only if. p is not covered by consensus (G, p ). 
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The theorem can be understood by considering the following explanatio : Given a 

c E G . the distance between c and p is at least 1. If the distance is exactly . then the 

consensus of c and p is a cube with minterms in both c and p. Hence, every interm of 

p covered by consensus (c . p ) is covered by another prime implicant differe 

(That is. a prime implicant which covers consensus (c, p) covers all of the m nterms of 

p n consensus (c. p) and is different from p because it contains minterms of c.)! Continu-

ing in this manner for all cubes of G. every minterm of p is covered by two or more 

prime implicants if and only if every minterm is covered by some cube in 

consensus (G, p ). 

This theorem provides a simple test for detecting essential prime implicahts in any 

cover: 

Proposition 4.5.1: Given a cover F for the ON-set. a cover D for the DC-set of a 

multiple-valued function, and a prime implicant p E F. form: 

H = consensus (((F U D)# p ), p ). 

p is an essential prime implicant if and only if p ~ H U D. 

Proof: p is to be tested as an essential prime of the function F U D. Set G = (F U D)# p 

and then F U D = G Up with G and p disjoint. Hence. Theorem 4.5.1 applies and p is 

essential if. and only if, all of the care minterms of p are not covered by H. 

• 
Remark: The condition that all of the care minterms of p are not covered by H is tested 

by checking if (H U D )P is a tautology. Hence. p is an essential prime implicant if. and 

only if. (H UD )P is not a tautology. 

A potential problem with this procedure is that H may contain a large *umber of 

cubes (but no more than n IF U D I). In practice. the performance of the tauto~ogy algo

rithm depends strongly on the number of cubes in the function being tested for tutology. 

For each cube of c E F U D. I review here the procedure for generating thf cubes of 

consensus (c # p. p ): 
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( 1) If distance (c, p)?:: 2 or c ~ p, then c # p is empty and consensus(~, p) = 0. 

Hence, no cubes are generated for H. 

(2) If distance (c, p) = 1 then c # p equals c, and a single cube resl\llts from 

consensus (c, p ). Hence, a single cube is generated for H. 
I 

(3) If distance (c, p) = 0, the sharp-product c #p generates one cube for eve+ variable 

I 

X; satisfying c; ~ P;. The cube associated with such an X; is: I 

j c j n rj if i = J 
(c # p )J. = "f ........ 

Cj I L r-} 
(4.5.1) 

Each of these cubes is distance 1 from c, and hence generates a cube after the con-

sensus operation according to: 

l
(cjnjij)Up1 = 

consensus ((c #p ), p )1· = n 
cj Pj 

if i = j 
if i ¢ j 

(4.5.2) 

Thus, when p and c intersect, as many as n cubes may be generated for H (where n 

is the number of variables of c). 

The number of cubes generated in the case that p and c intersect can be reduced by 

not generating extraneous cubes which result from the binary-valued variables fi.e., vari

ables with two parts). Assume that c ~ p, and consider a cube d E H which results 

from a binary-valued variable X;. This cube will necessarily have d; = 11, and 

dj = cj npj for j ¢i. However, pj cannot be 11 (it must either 10 or 01 to satisfy 

C; f Pi). Hence p n d c::; c n p. Thus. with respect to Proposition 4.5.1, the single cube 

c n p is sufficient to replace all of the cubes which result from considering eaclh binary-

valued variables. 

This result can be improved by noticing that any cube which results from a 

multiple-valued variable (according to equation 4.5.2) contains c np, and hence it is not 

necessary to consider the binary-valued variables if any multiple-valued variable! generates 
! 
I 

a cube for H. 
I. 
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Hence, to summarize, if c and p intersect (but c 

for each multiple-valued variable for which c; ~ p;. 

~ p ), a single cube i~ generated 

Then. if no cubes have! been gen-

era ted, the single cube c n p is generated. 1 

The TAUTOLOGY procedure outlined in the previous section is used to determine 

whether the resulting cover does indeed cover the cube c. If it does. then the rime c is 

nonessential. If it fails to cover the cube c, then the prime c is essential. 

There are two methods for determining that a cube cannot be essential. an these are 

used to reduce the number of cubes which have to be checked for essentiality: 

Method 1: I 

As outlined by [BMH84]. if a cube doesn't expand to its overexpandedlcube (and 

if it fails to cover any other cubes), then the resulting prime is nonessential. 

Hence, this condition is detected in EXPAND, and primes which cannot be essen-

tial primes are marked. These primes are not tested in ESSENTIAL for being 

essential primes. 

Method 2: 

By performing the IRREDUNDANT procedure before ESSENTIAL. more primes 

which cannot be essential primes are also detected. If a cube of F belongs to 

Rr , then it is completely covered by some collection of primes in F. Hence, it 

cannot be an essential prime. Only the primes in Er can be essential primes. 

(This is equivalent to the statement that Er contains all of the essent~al primes 

of the function.) For this reason. the ESSENTIAL operation is perforlmed after 

IRREDUNDANT. 

Note that the first EXPAND procedure is guaranteed to generate all essentialJprimes of 

F. Hence, ESSENTIAL will detect and remove all essential primes of the function( 

Finally, a comment is in order on an error in Logic Minimization Algorithml' for VLSI 

Synthesis. Given their definition of consensus, Theorem 4.4.3 on page 92 does no hold for 

multiple-output functions, but rather, holds only for single-output functions. s shown 
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I 
here, it is possible to determine if a prime of a single-output function is essentfl by gen-

erating at most one cube from each cube of F U D (in the case that c intersects the prime 

p being tested. we need to use only c n p rather than consensus (c # p, c) ). H wever, in 

the multiple-output case, when c intersects the prime p being tested. we must be careful 

to generate the single cube resulting from the multiple-valued consensus in t e output-

variable (if there is such a cube). This statement was mistakenly left out of the! definition 

of consensus. 

4.6. REDUCE I 

REDUCE is the step of the Espresso-II algorithm which transforms an iriedundant 

cover of prime implicants into a new cover by replacing each prime implicant, w ere possi-

ble, with a smaller, nonprime implicant contained in the prime implicant. An irredundant. 

prime cover is a local minimum for the cost function, and REDUCE moves us alway from 

the local minimum. The hope is that the subsequent EXPAND will determine a better set 

of prime implicants. 

The main component of REDUCE (and both LAST_GASP and SUPER_GASP~ involves 

the computation of the maximal reduction of a cube with respect to a cover: 

Definition 4.6.1: The maximal reduction of a cube c with respect to a cover F is the 

smallest cube contained in c that can replace c in F without changing the fun¢tion real-

ized. The maximal reduction of a cube c is denoted as ..£... 

As described in MINI. the maximal reduction of a cube c with respect to a cover F 

and a don't-care cover D equals the supercube of c # (F U D -c). However. computing 

the reduction in this way is very inefficient. 

Espresso-11 uses the identity..£..= c nsupercube ((F U D-e)~) to compute the maximal 

reduction of a cube. Hence, the operation of finding the maximal reduction of a cube can 

be reduced to finding the smallest cube which contains the complement of a corer. 

operation is readily computed recursively using the Generalized Shannon Cofacto . 

This 
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4.6.1. REDUC~ Cube Ordering I 

Note that the reduction of a single cube depends on the form of the co1er for the 

function. In particular. the order in which the cubes are processed for reduction affects the 

results of the REDUCE operation. The cubes which are reduced first will tend tf reduce to 

smaller cubes. thus possibly preventing cubes which follow from reducing as m1ch as they 

might have. i 

Espresso-11 uses the static ordering defined by the pseudo-distance betwee1 each cube 

and the largest cube in the cover. Pseudo-distance is defined (for multiple-out~ut cubes) 

as the number of variables in which the two cubes which are different (e.g .. 10--<01-11-01-

011 and 10-11-01-01-111 have a pseudo distance of 3 ). MINI uses the reverse otder of the 

EXPAND ordering. (Recall from Section 4.3 that the MINI ordering for EXPAND weights 

each cube according to how many other cubes have a 1 in the same parts as the cube.) All 

of these heuristic ordering strategies attempt to place cubes which are the most likely to 

reduce (i.e .. either "large" cubes. or cubes which have parts covered by many otlher cubes) 

near the top of the list. 

Experiments were performed for these REDUCE ordering strategies and also using a 

random permutation of the cubes. It was discovered that the solution returned for a par-

ticular execution of REDUCE varied. but did not favor any particular ordering over the 

random permutation. More importantly. the final solution returned from the Espresso-

MV algorithm was not sensitive to the ordering in REDUCE. I feel this is due tp both the 

iterative nature of the Espresso-II algorithm (if a cube is ordered such that jit fails to 

reduce. it may reduce on a subsequent iteration). and the LAST_GASP strategy sJccessfully 

removing the cube-order dependency of REDUCE. Hence. the actual choice of cube ordering 

is not believed to be critical. 

In Espresso-MV we choose to alternate between the MINI strategy and a strategy 

which places the largest cube on the top of the list, and orders the remaining cubes by 

increasing distance from the largest cube. Alternating these two strategies produced con-
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I 

sistently the same or better results for Espresso-MY than any single heuristic. jwe specu-

late that this is because. if the same ordering is used for every iteration, tha{ the same 

cubes will tend to be reduced first. By mixing the strategies. very differen~ orderings 

result allowing for exploring a wider range of expansions. I 

4.6.2. Computing the Supercube of the Complement 

The Generalized Shannon Cofactor is used to recursively compute the su ercube of 

the complement (i.e., the smallest cube containing the complement) of a functio according 

to the next two propositions: 

i 

Proposition 4.6.1: If a set of cubes c;. i = 1 · · · m satisfies U c;l= 1 and 
i= 1 

ci ncj = 0 fori ;e j. then 

supercube (F) = supercube [ i Q c i n supercube (Fe;) 

Proof: Using Proposition 2.3: 

to show 

m 

F= u ci nF,, 
i = 1 

m 

super cube (F) = super cube U c i n i'c i 
i = 1 

Given that supercube(ci nF,;) =ci nsupercube(F,,). we see the proposition holds . 

• 
This recursion naturally terminates when Fe, becomes a single cube whene the fol-

lowing test is applied: 

Proposition 4.6.2: Given a cube c : 

0 if c depends on no variables 

supercube (c) = c if c depends on one variable 

universe if c depends on two or more variables 
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bit-wise complement of c;. 

is a single cube resultinr from the Remark: If c depends on only the variable X; . then c 

I 

Proof: Trivial if one considers computing the complement of a cube using D Morgan's 

law. If the cube depends on more than two variables, then the complement co ins more 

than two cubes. Each of these cubes depends on only a single variable (with th 

literals all full). and hence the supercube of these cubes is the universe. If the cube 

depends on only a single variable, there is only one cube in the complement. Finally, if 

the cube is the universe. the complement is empty. 

However. there is also the following more powerful result: 

Proposition 4.6.3: If F is a weakly unate cover and pi represents the i 1
h cube in the 

cover. then: 

IFI 

supercube (F) = n supercube (pi) 
i= 1 

Thus. if the cover is weakly unate. this result is applied to quickly det¢rmine the 

supercube of the complement of a cover. Further, only the cubes of the wecj.kly unate 

cover which depend on a single variable need be considered (assuming the cover does not 

contain a universal cube), because the supercube of the complement of any cube which 

depends on two or more variables is the universe and hence does not affect the inttersection. 

There are two other results (easily derived from De Morgan's law) which aan be use-

ful in reducing the amount of work necessary to compute the supercube of the comple-

ment of a function. 

Proposition 4.6.4: If the cover F contains a column of O's, form the cube c which has a 0 

in each position where F has a column of all O's, and 1 elsewhere. Then. from the iden-

tity F = c n Fe, is is seen that 

I 
supercube(F) = supercube(supercube(Fz). supercube(C)). i 

Hence. if there is a column of O's in the matrix for F. this proposition is ~pplied to 

compute supercube (F). In particular. if F has a column of O's in two separate! variables. 
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then it is immediately determined that supercube (F) =universe. 

Proposition 4.6.5: If F can be factored into the form F =A U B where A 

disjoint variable sets. then 

super cube (F) = super cube (A) n supercube (B) 

I 

and r 
I 
I 

74 

are over 

Detecting such a partition of H corresponds to finding a row and colum permuta-

tion resulting in the form: 

[AD] 
[II]] 

where 1 represents an appropriately sized block of all 1 's (and the division does not split 

a variable between the two halves). As in the case of tautology, such a partition is easily 

determined with a simple greedy strategy. In practice. such a decomposition may not be 

common. and should only be checked for when the matrix contains many 1 's. 

4.6.3. Choice of Splitting Variable 

It would be desirable to choose the cubes c 1 • c 2, ···.em so that the resulting cofac-

tors quickly become weakly unate. However, it is not clear how to efficiently choose a 

splitting variable and a partition of that variable so as to achieve this goaL In Espresso-

MV the simple strategy outlined in Section 2.5 is used when choosing the cubes· for parti-

tioning. 

4.7. LAST_GASP and SUPER_GASP 

The basic iteration of Espresso-11 (REDUCE, EXPAND, IRREDUNDANT) fac~ the fol-

lowing obstacles: (1) The EXPAND step uses heuristics to choose one prime impli4ant (from 

all of the prime implicants which cover a cube) to replace each cube in the cov(jr; and (2) 

the REDUCE algorithm is cube-order dependent so that cubes which are reduced' first tend 

to reduce more than cubes which are reduced later. Different minimization ;1gorithms 

have managed these problems in different ways. For example, MINI uses t~e reshape 

operation in order to sidestep these problems, and Prestol-11 uses the change_s~pe opera-
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I 

tion (twice in succession) in order to escape these problems. I describe here the tspresso-11 

strategy LAST_GASP and the Espresso-MY strategy SUPER_GASP for improvint' the basic 

minimization algorithm. 

4.7.1. LAST GASP 

This algorithm first computes the maximal reduction of every cube of he ON-set 

cover F and creates a new cover G. If a cube cannot be reduced it is ignored. modified 

version of the EXPAND algorithm expands each of the cubes of G. The EXPAN 

is modified so that: (1) the expansion of a cube is stopped as soon as it is deter ined that 

it cannot cover any other cubes: the cube is removed from G in the case tha it cannot 

expand to cover any other cubes: and (2) all of the cubes are expanded even f they are 
i 

covered by the expansion of a different cube. As shown in [BMH84]. those fubes that 

succeed in covering some other reduced cube are potentially useful primes for rerucing the 

cardinality of the cover. These new primes are simply added to the cover ) . and the 

IRREDUNDANT procedure then extracts a minimal subcover. Because the number of 

reduced cubes which can expand to cover other reduced cubes tends to be very small. this 

technique is applicable to a wide range of problems. In particular. I have not found any 

examples for which the running time of the algorithm is dominated by the LAST_GASP 

operation. 

4.7.2. SUPER_GASP 

Espresso-MY also has an optional routine SUPER_GASP. This algorithm computes 

the maximal reduction of each cube of the cover F and then generates all of the prime 

implicants which cover the cube (rather than only a single prime implicant which covers 

the cube). In order to generate all of the prime implicants which cover a cube, the algo-

rithm given in Section 4.3 (EXPAND) is used. By sorting this set of prime i~plicants. 

duplicate prime implicants are easily detected. IRREDUNDANT then extracts t minimal 

subcover from the remaining set of prime implicants. Note that if IRREDUNDAjT returns 

the minimum number of cubes necessary to implement the function. then no single 
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I 

<temion of REDUCE, EXPAND, and IRREDUNOANT oan do any bette' hom the ~e sta,t-

mg pomt. I 

Of course. the process of generating all of the primes which cover the ~aximally 
I 

reduced cubes may greatly expand the size of the cover. Cln particular, if t e original 

cover were all minterms, the generation of all of the primes covering each mint rm would 

be an inefficient way to generate all of the primes for the function.) Th program 
I 

Espresso-MY is careful to terminate the generation of all of the primes in the case there 

are too many primes, in which case the LAST _GASP strategy is used instead. n practice. 

the SUPER_GASP can be selected optionally when the program Espresso-MY ·s run. In 

Chapter 6, I report experimental results with this option. 

4.8. MAKE_SPARSE 

When the outer loop of the Espresso-MY algorithm terminates, the solution consists 

of an irredundant cover of prime implicants which represents the original function. How-

ever, depending on the final implementation of the multiple-valued function, we may 

desire a final cover which does not necessarily consist of prime implicants. One goal is to 

reduce the number of transistors needs to implement each literal of a cube. This depends 

on the number of O's and 1 's in the literal. but it also depends on the type of variable as 

shown in Table 4.8.1: 

Variable Type 
binary-valued variable 

multiple-valued variable 
(for a two-bit decoder) 

multiple-valued variable 
(for the output part) 

multiple-valued variable 
(for the input encoding problem) 

Number of transistors Com~ent 
count number number of zeros spar;f 

count number of zeros sparse 

count number of ones dense 

count number of ones dense 
(unless literal is full) 

Table 4.8.1. Transistors per Literal in a PLA 

For example, if the function being minimized represents a two-level multiple-output 

PLA function, then each 0 in the cube for a binary-valued variable corresponds to a 
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transistor in the AND-plane of the PLA. but each 1 in the multiple-valued outppt variable 

corresponds to a transistor in the OR-plane of the PLA. I 

Another example is minimizing a multiple-valued function foe the state-t"'ignment 

program KISS. For these functions. it is preferred that the multiple-valued var ables have 

as few l's as necessary (which will lead to fewer constraints for the embedding roblem). 

Hence, the binary-valued variables and multiple-valued variables result· 

bit-paired PLA are desired to be dense (i.e .. have many l's). and the multiple-v lued vari-

able resulting from the output-part of a PLA are desired to be sparse (i.e .. hav few l's). 

Finally. the multiple-valued variables resulting from a symbolic variable (a in KISS) 

should be sparse unless the cube does not depend on this particular variable. ith these 

observations we define. for each variable. whether the variable is to be a spar variable 

or a dense variable. The MAKE_SPARSE procedure then attempts to satisfy the e goals. 

MAKE_SPARSE consists of two steps: LOWER_SPARSE removes redundant parts from 

the sparse variables and RAISE_DENSE attempts to add parts to the dense variaWes (which 

may be possible following LOWER_SPARSE because the cubes are no longer prime impli-

cants). These two algorithms are iterated until there is no more reduction of any sparse 

variable. or until there is no more expansion of any dense variable. This algorithm is 

iterated in Espresso-MY (as opposed to Espresso-11 which only executed each step once) 

because the total literal reduction is worth the extra expense. 

During the first iteration of LOWER_SPARSE and RAISE_DENSE the cardin~lity of the 

cover cannot decrease (because the cover is an irredundant. and consists of prtme impli-

cants). However. in extreme cases, it is possible for the cardinality to decreas~ in subse-

quent iterations. In fact. the procedure MAKE_SPARSE can be viewed as a complete 

minimization algorithm. (The pop program from Berkeley [Sim83] uses essen~ially this 
I 
l 

simple algorithm. but without the powerful techniques for each of the basic ~teps as in 

MAKE_SPARSE. However. this minimization algorithm is restricted in the size o1 the set of 

prime implicants which it can explore.) 
l 
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In the discussion that follows, we assume, as usual, that F is a cover for t~e ON-set, 

D is a cover for the DC-set and R is a cover for the OFF-set. I 

4.8.1. LOWER_SPARSE- Reduce the Sparse Variables 

The goal of LOWER_SPARSE is to remove parts from the sparse variabl so as to 

reduce (if possible) the number of l"s in these variables for each cube. This pro edure can 

be viewed as cube reduction applied to each cube with the reduction retained o ly for the 

the multiple-valued variables. However, this technique suffers from the same ~roblem as 

REDUCE, namely that the order in which the cubes are processed can greatly 1 affect the 

total amount of reduction possible. 

Instead, the IRREDUNDANT routine is used to select, for a particular p rt, which 

cubes are redundant: this part is set to 0 for the redundant cubes. This way the cube ord-

ering problem is avoided, and the more powerful heuristics of IRREDUNDANT a e used to 

find a good reduction of the sparse variables. 

For each value j of a sparse variable X; , define e j to be the cube of Xi l j 1 • By 

finding an irredundant cover for (F U D) ; we can determine which cubes of F can have 
e J 

part j removed. If a cube does not belong to the irredundant subcover of (F U D ) ; , then 
'J 

the part in the cube is redundant and can be removed. These parts are removed, and, after 

all parts for a variable have been processed, the next variable is processed. 

Note that by using the IRREDUNDANT algorithm rather than REDUCE, the order in 

which the cubes are examined in part j of variable X; is immaterial. (Further. the order 

in which the parts of any variable is processed is also immaterial.) But. the ordet in which 

the sparse variables are processed does influence the reduction of variables whi1h are not 

processed first. In Espresso-MY, LOWER_SPARSE is applied to sparse i variables 

corresponding to multiple-valued variables resulting from the input-encoding problem. 

This is done to simplify the constraints which arise from the multiple-valued Jfrts. The 

last variable processed is the multiple-output variable. Admittedly. this heurist~c is a lit

tle crude. 
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4.8.2. RAISE_BV - Expand the Dense Variables 

As mentioned earlier. we desire that the binary-valued variables. and th variables 

resulting from bit-pairing be dense. After reducing the multiple-valued vari bles with 

LOWER_SPARSE, the resulting set of cube is no longer prime. Hence. we can try to expand 

this set of cubes by expanding only the dense parts of each cube. This is d e with a 

modified version of EXPAND which removes all of the sparse parts from the f 

sec 4.3) befo,. finding the expansion of a 'ube. Hence. none of the spa<se ~ will be 

expanded. I 

Interestingly. EXPAND will still check for cubes which, when limited tJ only the 

dense variables. can expand to cover another cube. As mentioned earlier. on SIUbsequent 

iterations of MAKE_SPARSE it is possible for the cardinality of the cover to decrease. If it 

is possible for a cube to be covered, EXPAND will expand the dense variables so as to cover 

the cube. 





CHAPTER 5 

Exact Boolean Minimization 

Two methods for generating all of the prime implicants of a Boolean fun4tion were 

presented in Section 4.3 (EXPAND). and in Section 4.4 (IRREDUNDANT) an alg9rithm for 
i 

efficiently generating the prime implicant table of Quine and McCluskey was tresented. 

Generating the set of all prime implicants. using IRREDUNDANT to generate he prime 

implicant table. and then solving the covering problem for this table provides an !algorithm 

for determining the minimum solution for a given minimization problem. 

In this chapter, a new set of heuristics for guiding a branch and bound solu~ion to the 

covering problem is presented. These heuristics have been used to solve many large cover-

ing problems resulting from Boolean minimization problems. A new approxi~ate algo

rithm of polynomial complexity (based on these heuristics without any ba4tracking) 

which is more practical for heuristic minimization programs is also presenled. This 

approximate algorithm also has the advantage of providing a lower-bound on the! cardinal-

ity of the exact solution. and hence can sometimes determine that the solution provided is 

in fact optimum. 

5.1. Minimum Cover Problem in Espresso-MY 

Recall that the minimum covering problem appears in Espresso-MV in two Ways: 

(1) During IRREDUNDANT when there are partially redundant cubes in the ~over. the 

problem is translated (via the Generalized Shannon Cofactor) into an equiv~lent cov-

§ 5.1 

ering problem. A minimal solution to this covering problem corresponds tt discard
i 

ing a maximal subset of the partially redundant set. (Also. LOWER_SPtRSE uses 

IRREDUNDANT to remove redundant parts from the sparse variables). 

80 
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(2) During EXPAND, when there is no longer any way to obviously guide the !expansion 

of a cube into a prime implicant, the problem of expanding the cube into the largest 

possible prime implicant (the prime implicant covering a maximal numbdr of min-

terms) is translated into a covering problem. The solution to this coveri~ problem 
! 

determines how the cube should expand. 
! 

5.2. Minimum Cover Problem 
i 

Minimum Covering Problem: Given a binary matrix A, and a cost cost(1) for each 

column of the matrix, find a vector x such that A •xT ~ (1,1,. .. ,1)T and E x;lcost (i) is 
i=l 1 

I 
minimum. 

The constraint A •xT ~ (1,1,. .. ,1)T can be understood as saying that each 1ow of the 

matrix must have at least one 1 in some column where x has a 1. On this case, ~he row is 

said to be "covered'' by the particular "column" of x, and the goal is to covet all rows 

with a vector of minimum weight.) This problem is NP-hard [GaJ79] so that lany algo-
l 

rithm which solves the problem can be expected to have a bad worst-case complefity. 

In this chapter, a cost function of 1 for each column of the matrix is used t~ simplify 

the explanation. In Section 5.8, the extensions of the algorithm presented here Ito a more 
I 

general cost function are considered. 

5.3. Reducing the Size of the Covering Problem 

First, I review some results which are of interest in reducing the size of t covering 

problem: 

(1) Partitioning: If the rows and columns of matrix A can be permuted to yie~d a block 
structure of the form: ' 

(2) 

where 0 represents an appropriately sized block of all zeros, then a mini1um cover 
for A can be written as the union of a minimum cover for A. and a mini urn cover 
for B. 

Essential Elements: Any row of the matrix A which has only a single !~identifies 
an essential column. The solution vector x must have a 1 in the essential olumn in 

I 
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order to cover the row singleton. After placing a 1 in the essential column,iany other 
rows which become covered can be removed from consideration. 

(3) Row Dominance: If row i of A contains another row j of A (i.e .. row i ~ontains a 
1 for all columns in which row j has a 1), then row i can be removedl from the 
matrix A without changing the minimum solution. Clearly. once row j: has been 
covered, then row i will automatically also be covered. and hence row i islproviding 
redundant information in the covering problem. i 

(4) Column dominance: If column i of A contains another column j of A (i.t .. column 
i contains a 1 for all rows in which column j contains a 1), then columii j can be 
removed from the matrix A without changing the minimum solution. Cle<\.rly. there 
could be no advantage to choosing column j because choosing column li instead 
would cover the same set of rows. and perhaps more. Hence, column j is Q.ot needed 
for a minimum solution. ' 

Therefore. the strategy to reduce the size of the matrix is: 

(1) Look for a block partitioning. 
! 

(2) Use row dominance and column dominance to reduce the number of ~ows and 

columns in the matrix. Note that it is only necessary to apply either transformation 

once. and the order in which they are applied is irrelevant. 
1 

(3) Identify essential elements and add them to the covering set. The rows which are 

now covered and the essential columns are removed from the matrix. 

(4) Repeat Steps (2)-(4) until no essential elements are detected in Step (3). 

After using Steps (1)-(4) to reduce the size of the matrix, if a solution ha~ not been 

reached. an element is selected for branching. The problem is then solved rtcursively 

assuming the branching element is in the solution, and then assuming the branthing ele-

ment is not in the solution. 

The branch and bound algorithm for solving this problem is shown on the :jlext page. 

The routine is entered at the top level with: the matrix (A ) to be covered, a curtent solu-

tion (x) which is initially the empty set. a record (best) of the best solution kn~wn to be 

a cover (which is initially a full set), a lower bound (best_possible) on the size <ff the best 

solution (which is initially oo), and an indication level of the current level in theirecursion 

(which is initially 0). The routine returns a set of the columns of A which is a ~inimum 

I 
' 

cover for A. 
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bit_ vector minimum_cover(A. x. best. level) 
bit_matrix A; I* the matrix to be covered *I 
bit_ vector x; I* the current solution *I 
bit_ vector best; I* the best solution seen so far *I 
int best_possible; I* the best solution possible *I 
int level; I* recursion level *I 
{ 

if (partition(A, H 1 • H 2 )) { I* check for block partition *I 

do { 

x 1+- minimum_cover(H 1 , 0, 0, best_possible, 0); 
x 1+- minimum_cover(H 2 • 0. 0. best_possible. 0); 
return x 1 Uxz; 

I* reduce the number of rows and columns *I 
A+- remove_row_dominance(A): 
A+- remove_column_dominance(A): 

I* Select essentials, and remove rows covered by an essential *I 
p +- detect_essential(A); 
x+-xUp; 
A +-reduce(A, p); 

} while (p ;:C0); 

independent_set +- maximal_independent_set(A): 
if (level == 0) 

best_possible +- I independent_set I ; 

I* if current solution exceeds the best possible from here on, bound the se~rch *I 
if (I x U independent_set I ~ I best I ) ' 

return best ; 

I* if no rows left in A. then new best solution */ 
else if (numrows(A) == 0) 

return x; 

I* Else branch on some column *I 
else { 

q +- select_column(A. independent_set); . 

83 

I* recur assuming q belongs to the minimum cover *I · 
left +-minimum_cover(reduce(A. q ), x Uq. best. best_possible.llevel+1); 
if (I left I < I best I) 

best= left; 
if (I best_possible I= I best I) 

return best; 

I* recur assuming q does not belong to the minimum cover *I 
right +-minimum_cover(remove(A. q ). x, best. best_possible. ¥vel +1); 
if ( I right I < I best I ) I 

best = right; I 

return best; 
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The routines remove_row _dominance and remove_column_domina*ce apply 

row and column dominance to A to reduce its size. The routine detect_essential detects 

rows with only a single 1. and these are added to the selected set. Thc:t function 

select_column applies heuristics to select a column of A for branching. Th~ function 

reduce removes those rows of A which are covered by q and removes the colupm q. and 

the function remove(A . q) deletes the column q from A. 

First a check is made for a simple partition of the covering problem. If this1 fails. row 

and column dominance are applied iteratively to reduce the size of the coverint problem. 

and then the essential elements are detected and added to the selected set. Th~n. using a 

technique described in the next section, a lower bound is placed on the size of th4 cover for 
I 

A. and the search is terminated (or bounded) if the size of the selected set excee4s the best 

solution possible for A. If there are no more rows in A . then we have reached cl. new best 

solution. and the solution is returned. Otherwise. a column is selected heuriftically to 

branch on and recursively compute the solution assuming that the element is in ~he cover-

ing set, and then assuming that the element is not in the covering set. 

5.4. Use of the Maximum Independent Set 

The most important feature of the above algorithm is in th~ routine 

maximal_independent_set. This routine finds a maximal set of rows of A alj of which 

are pairwise disjoint (i.e .. they do not have l"s in the same column). It shou* be clear 

that the number of rows in this independent set is a lower bound on the solutlion to the 

covering problem. because a different element must be selected from each of th¢ indepen-

dent rows in order to cover these rows. Hence. this lower bound can be used to!terminate 

the search if the size of the current solution plus the size of the independent set! is greater 

or equal to the best solution seen so far. Also. the size of the independent set * the first 
' 

level of the recursion is a lower bound for the final minimum cover. Hence. by! recording 

this value, the search can be terminated if a solution is found which meets lower 

bound. 
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The major drawback of this technique, of course. is that the problem of finding a 

maximum independent set of rows is itself an NP-hard problem. But this is of qo concern. 

The problem of finding a maximal independent set of rows can be solved h~ristically 

while still providing a correct lower bound on the size of the final solution. Cfn general. 

finding the maximum independent set provides the best bound; other minima~ solutions 

provide less precise. but. nonetheless, accurate lower bounds.) Hence, even tJjlough this 

problem is itself difficult. a good. heuristic algorithm is sufficient for finding f maximal 

independent set of rows. 
! 

To find a large independent set of rows. a graph is constructed where 'the nodes 

correspond to rows in the matrix, and an edge is placed between two nodes if the two 

rows are disjoint. The problem is now equivalent to finding a maximal clique (a maximal. 

completely connected subgraph) of this graph. To solve this problem. a greedylalgorithm 

is used: 

(1) Initialize the clique to be empty (contains no nodes); 

(2) Pick the node of largest degree (and not already in the current clique), ani:t add this 

node to the clique. Break ties by choosing the node which is connected td the most 

other nodes of maximum degree; 

(3) Remove all nodes and their edges from the graph which are not connected to the 

current clique; i 

I 
(4) Repeat Steps 1 and 2 while there are still nodes in the graph not in the curr.nt clique. 

The node of largest degree in Step 2 corresponds to the row which is disjoin~ with the 

I 
maximum number of other rows of the matrix. The tie-breaker attempts to Jteserve as 

many of the remaining nodes of maximum degree as possible. 

Thus. the bounding in the branch and bound algorithm is modified by bo~nding the 

search if I maximal_independent_set(A ) U x I equals or exceeds the best knr· wn solu

tion (rather than waiting until I x I equals or exceeds the best known solution.), The goal 

I is to terminate unprofitable searches as early as possible. 
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Besides the fact that the problem of finding a maximum independent set pf rows is 

NP-hard, there is the further difficulty that the bound provided by the maximUI~ indepen-

dent set may not be sharp. For example. consider the matrix: 

1 1 0 
0 1 1 
1 0 1 

A maximum independent set of rows for this matrix contains only a singlf row. but 
l 

a minimum cover requires at least two columns. The size of the maximum indetiendent set 

remains a lower bound on the size of a minimum cover: the search may just 1ot be ter
i 

minated as early as possible. 

5.5. Choice of Branching Column 

A unique element from each set of the independent set of rows must ibe in the 

minimum solution. Once a maximal independent set of rows has been computed.! the selec-
I 
I 

tion of a branching element is limited to some element which belongs to one of t~ese rows. 

Each element of each row is given a weight as the reciprocal of the row sum. ! Then the 

weights are summed for each column. and the column of maximum weight whkh is also 

in the independent set of rows is chosen for the branching variable. This weiglhing stra-

tegy gives the elements of the smaller sets a higher weight. For example. in a ~et with 2 

elements. each element receives a weight of 0.5. whereas in a set with 10 elemjents. each 

element receives a weight of 0.1. The larger sets are thought of as .. easier" to ¢over, and 

the smaller sets are .. harder" to cover. The heuristic is to try to force a selection! from one 
i 

of the smaller sets. Another reason for favoring choosing an element from a stnaller set 
I 

(for example. a set with two elements) is to create more essential elements at thJ next step 

of the recursion. 

5.6. Heuristic Covering Algorithm 

The heuristic covering algorithm used in Espresso-MY is based on the a~ove algo-

rithm for the minimum covering problem. In order to make the running 1me more 
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predictable, the algorithm is converted into a greedy algorithm in which th~ first leaf 

visited is taken as the solution and no backtracking is performed. Note that tlb.is greedy 

algorithm has the nice property that it can compute a lower bound on the! size of a 

minimum cover (even though it is not guaranteed to generate a minimum covet). (Recall 

that the size of the maximal independent set of rows at the first level of the rec~rsion is a 

lower bound for the minimum solution to the covering problem.) Hence, som~times this 

greedy algorithm is able to demonstrate that it has achieved a minimum solutionf 

5.7. Implementation 

The matrix A is stored as a fully packed bit-matrix. Each row occupies a ~umber of 
i 

consecutive words, and each bit in the word is set to either 0 or 1. 

The algorithm, as described above, is recursive. At the top leveL th~ maximal 
! 

independent set determines a lower bound on the final solution. This is recorded, and if 

the lower bound is ever achieved, the branch and bound is terminated. 

The first step is to determine if the matrix has a block partition. If so, thd matrix is 

split into two parts, and the algorithm is recursively entered at the top leveL 

Row dominance is detected by first sorting the rows of the matrix using an 

0 (n log n) sorting algorithm. The rows are sorted into ascending order bas~d on the 

number of l"s in the row: two rows with the same number of 1 's are sorted i~to lexico-

graphical order. Equal rows (a special case of row dominance) are then easily detected and 

removed. Because duplicate rows have been removed, a row can only domina1e another 

row if it has strictly fewer l"s: hence, to determine if a row is dominated. it is o~ly neces-
, 

sary to compare it against rows which precede it in the sorted matrix. 

Column dominance is slightly more difficult because of the row-oriented structure of 

the bit-matrix. The matrix is first transposed so that all column operations b~ome row 

operations, and then the matrix is sorted as described above. Then containmert is per

formed on the columns in a similar manner to the row containment descri~d above. 
I 

Finally, the matrix is transposed a second time to restore it to its proper shape. 
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The maximal independent set graph (G) is symmetric. and is most easily represented 

by a fully-packed binary adjacency matrix. The matrix is generated by inters~cting each 

pair of rows of the matrix. and inserting a 1 into position Gij if the rows are disjoint. 

5.8. Extension to a General Cost Function 

The branch and bound algorithm presented here can also be extended t~ treat the 

more general case of an arbitrary cost function c (") defined for each column. 

Row dominance remains a valid technique to reduce the number of ro~s in the 

matrix. and essential columns must still be in a minimum cover. However. ifi column i 

contains column j. then column j can be deleted only if the cost of column j is the same 

or more than the cost of column i. 

The major extensions to the covering algorithm depend mostly on how to interpret 

the maximal independent set for the purpose of bounding the search. The b~und on a 

minimum cost solution is given by the cost of the current solution plus the cost pf the ele-

ment of least cost in each row of the set of independent rows. 





CHAPTER 6 

Experimental Results 

In this chapter I report results from an implementation of the Espresso-fMY algo-

rithms. The Berkeley PLA test set includes a large collection of PLA's and a srpaller col

lection of multiple-valued logic functions. I present results from the program! Espresso-

MY (in both its heuristic and exact modes) for all examples in the test set and compare 

the results to the exact minimizer McBoole [DAR86]. and to the heuristic !minimizer 

Prestol-II [BaM85]. For the multiple-valued minimization problems, I present :Jtesults for 

Espresso-MY minimizing these problems as a binary-valued minimizer with an appropriate 

don't care set, and as a multiple-valued minimizer. Unfortunately. I do not have access to 

other multiple-valued minimization programs for comparison. 

6.1. Espresso-MV 

The program Espresso-MY implements the heuristic and exact logic miiilimization 

algorithms described earlier. as well as heuristic and exhaustive algorithms for ~he output 

phase assignment and the input variable assignment problems. The program c4n also be 

used for manipulating multiple-valued logic functions. Espresso-MY will (1) cofnpute the 

intersection, union. or sharp-product between two logic functions: (2) verify ~he logical 

consistency of two logic functions: (3) compute the complement: (4) compute th~ set of all 

prime implicants: (5) check the logical consistency of a single logic function. ihe use of 

the program (including the input and output file formats) is documented in AP!Pendix A. 

Espresso-MY is written in the C language and is about 10.000 source lines. Th¢ program 

as written fits into the UNIX environment as a filter (reading a logic functioh or logic 

functions from standard input, and writing the logic functions to standard outpujt). 
i 
I 

The command line option -do exact selects the exact minimization algtrithm of 

Espresso-MY. This is referred to as Espresso-MY in the exact mode. LikJwise, the 
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command line option -strong uses the SUPER_GASP heuristic described in Sectidn 4. 7. and 

is referred to as Espresso-MY in the strong mode. 

6.2. The PLA Test Set 

When research leading to the Espresso-11 algorithms began. PLA example~ were col
i 

lected as a vehicle for comparing different minimization algorithms. By the timt the book 

Logic Minimization Algorithms for VLSI Synthesis was written. 56 PLA examplef had been 

collected. Further donations to the test set from industry and Universities ha4 expanded 

the test set to 134 functions. Of these. 111 are designated as industrial examplts (imply

ing that their origin is either an industrial or University chip design). a1d 23 are 

mathematical functions such as multiply and square root. Included in the test lset are 11 

randomly generated examples given to us by the authors of Prestol-11. Because the ran-

dom examples exhibit behavior which is much different from the industrial exantples. they 

are reported in a separate section. Tables 6.1 and 6.2 show the raw data for Es~resso-MV 

in its normal. strong. and exact modes and raw data for McBoole and Prestol-11 'ivhen such 

data is available. (This raw data is summarized in the text.) 

The complete test set presented here is available from the Industrial Sup!lort Office. 

461 Cory Hall. University of California. Berkeley. CA 94720. 

6.2.1. Grading the Test Set by Problem Difficulty 

With a test set so large. it is a challenge to present the results from comp~ting algo-

rithms in a meaningful manner. It can be misleading to merely report the total J!!umber of 

cubes and total number of literals for each algorithm and then attempt to draW conclu-

sions from these totals. Hence. my first goal is to determine the difficulty of the minimiza-

tion problem for each PLA in the test set. 
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For each problem in the test set. I first classify the problem as one of the following: 

Classification Description 
trivial minimum solution consists of essential prime implilcants 

noncyclic the covering problem contains no cyclic constraints! 

cyclic and solved the covering problem contains cyclic constraints 
and the minimum solution is known 

cyclic and unsolved the covering problem contains cyclic constraints 
but the minimum solution is unknown 

too many_primes there were too many primes to be enumerated 

Table 6.1. PLA Classification by Degree of Difficulty. 

The classifications were determined by allowing the exact minimization al~orithm of 
I 

Espresso-MY and the exact minimization algorithm of McBoole to run for 5 bouts for each 
' 

example on an Apollo DN6601. (If a program had not terminated after 5 hours. it was 

aborted). By examining the results for each program. a classification is detetimined for 

each example. If the problem was solved by either of the two exact minimiz.tion algo

rithms. it is easy to decide whether it belongs to the class trivial. noncyclicJ or cyclic 

and solved. An example is classified as too many primes only if neither prqgram was 

able to enumerate the complete set of prime implicants. and an example is classified as 

cyclic and unsolved only if neither program was able to complete the coverirt program 

after having generated the set of all prime implicants. 

6.2.2. Comparison of Exact Minimization Algorithms 

I first report the results from the exact minimization algorithm of Espress<j,-MV. and 

the exact minimization algorithm McBoole. Note that both programs first generate the set 

of all prime implicants. and then attempt to find a minimum subset of the set of all prime 

implicants. Further. both programs attempt to solve only the simpler coverint problem. 

namely. to return the cover with the fewest number of cubes without consid1ration for 

1 Tests show that the Apollo DN660 with Version 3.12 of the C Compiler executes Espresso-M at the same 
speed as a DEC VAX 11/785 with the 4.3BSD portable C compiler. All results in this section wer timed on an 
Apollo DN660 with 4 megabytes of memory. I 
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the number of literals. On fact. both programs use a "cleanup" step where the bumber of 

literals is reduced once the minimum number of rows has been achieved. but both pro-

grams solve this problem heuristically.) McBoole generates the prime implicant$ using the 

consensus algorithm described in [DAR86]. By maintaining the tree structure c4>rrespond-

ing to where a cube was generated. McBoole is able to reduce the number of pai~wise con-

sensus operations that need to be performed. During the generation of prime ijmplicants. 

McBoole creates a directed graph which is used to solve the selection of a subse~ of the set 
I 

of all prime implicants. 

Table 6.2.2 summarizes the comparison between Espresso-MY (exact ~ode). and 

McBoole for the 134 PLA's in the test set. Number primes is the number of examples for 

which each program was able to generate all of the primes for. number solved is the 

number of the examples for which each program was able to solve. and time gives the total 

time on an Apollo DN660 (in seconds) taken for those examples which couldi be solved 

within the 5 hour time limit. Thus. for example. Espresso-MY took more thjan 30.000 

seconds longer than McBoole for the category cyclic and solved. but this involVJed solving 

20 more problems than McBoole. 

Espresso-MY (exact) McBoole (exhct) 
type total number number time number numbd time 

primes solved (sec) primes solvedi (sec) 
trivial 9 9 9 120 9 9 271 
non cyclic 56 55 54 26524 56 56 35956 
cyclic and solved 42 42 41 41330 42 21 11241 
cyclic and unsolved 10 7 0 10 0 
too many primes 17 0 0 0 0 
Totals 134 113 104 67974 117 86 47468 

Table 6.2.2. Comparison of Espresso-MY (exact) and McBoole. 

For examples with no cyclic constraints. both Espresso-MY and McBoole are usually 

able to find the minimum solution. Espresso-MY failed to generate the minimu* solution 

for two examples (al2 and prom]). For prom]. it was unable to enumerate ~11 of the 

primes (which has 9.179 primes). For al2. it was able to generate all of the pri~es (there 

were 9.326 primes). but was unable to generate the prime implicant table. 
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However, when there are cyclic constraints. the covering algorithm of Espresso-MV is 

able to find the minimum solution for many more of the PLA's than McBoole. Only for 

example intb did Espresso-MV fail to solve an example with cyclic constl1aints that 

McBoole was able to solve. (Espresso-MV was unable to generate the prim~ implicant 
i 

table for intb which has 6,522 prime implicants.) Sometimes the results I are quite 

dramatic. The example sqr6 was allowed to run for 58 hours with McBoole whhout ter-

minating with the minimum solution: however, Espresso-MV is able to completcl this same 

example in only 100 seconds. Also. Espresso-MV was able to determine the! minimum 

cover for the example mlp4 (a four bit multiplier) in about 1 hour. Results !have been 

published for both of these examples without presenting the minimurrj. solution 

[DAR86. Sas82]. As far as I know. no previous program has successfully mininltized these 

two examples. 

Comparing the efficiency of the prime generation algorithms, we find that iri 113 cases 

both programs could generate all of the prime implicants, in 4 cases (b4 with 6.4!55 primes, 

bcO with 6,596 primes. prom] with 9,326 primes, and tl with 15,135 primes) M4Boole was 

able to generate all of the prime implicants when Espresso-MV could not, and iln 17 cases 

neither program was able to generate all of the prime implicants. There wert no cases 

where Espresso-MV was able to generate all of the primes, and McBoole was una~le to. 

Overall, there were 83 examples which both programs could minimize, 31 examples 

which McBoole could minimize which Espresso-MV could not, 21 examp~es which 

Espresso-MV could minimize which McBoole could not, and 27 examples for whlch neither 

program was able to complete the exact minimization (20 %). For the 83 examples which 

both programs could minimize, Espresso-MV used 38,198 seconds, and McJloole used 

28.628 seconds. The Espresso-MV result had 51.821 literals, and McBoole h~d 53,686 

literals indicating that MAKE_SPARSE was more efficient at reducing the number!of literals 

(once the minimum number of terms was determined). Of course, for these 83lexamples, 

both returned the same number of prime implicants, essential prime implicants.,and solu

tion cubes. 
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Including the time each program used on those examples for which a soliution was 

not found, Espresso-MY used 6.1 days of computer time and McBoole used 10f3 days of 

computer time. 

Detailed results for all 134 examples are given in Table 6.1. We sum~arize the 

lower bounds obtained from Espresso-MY and the best upper bound results for the 10 

examples in the category cyclic and unsolved in Table 6.2.3. 

Example Primes Essential Lower Bound Upper Bound 
Primes 

9sym 1680 0 84 84 
b4 6455 40 54 
bcO 6596 37 177 
ex5 2532 28 59 67 
lin.rom 1087 8 125 129 
max1024 1278 14 239 267 
prom2 2635 9 274 287 
spla 4972 33 251 
tl 15135 7 102 
tial 7145 220 575 

Table 6.2.3 Upper and Lower Bounds for the Cyclic and Unsolved Probl~s. 
! 

I 

6.2.3. Espresso-MY Results 

I am thus in an excellent position to grade the quality of the results for tht heuristic 

minimization algorithm Espresso-MY. I know the minimum solution for 107 df the 134 

examples in the test set, and, as shown in 6.2.3 I have a lower bound for 5 of t~e remain

ing 27 examples. 

Table 6.2.4 shows the totals for 133 examples, broken down by cat~gory. for 
I 

Espresso-MY and Espresso-MY (strong mode). The examples were run on ~n Apollo 

DN660. It is evident that the SUPER GASP option can be expensive; but. som~times the 
- I 

extra reduction in the number of terms might be considered worthwhile. ~uriously. 

SUPER_GASP produces more literals in all categories. 
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Espresso-MV Espresso-MV (str(mg) 
type # solution time solution time 

cubes lits (sees) cubes lits ICsecs) 
trivial 9 243 1683 23 243 1683 23 
noncyclic 56 3909 45712 1674 3899 45956 2372 
cyclic-s 42 4092 42030 3202 4056 42577 5403 
cyclic-us 10 2023 25347 3444 2010 25438 4637 
too-many-primes 16 2759 35718 6751 2755 35881 7924 
Totals 133 13026 150490 15094 12963 151535 ~0359 

Table 6.2.4. Espresso-MV Results. 

I 
Next I compare the results from Espresso-MV (again, with an1 without 

SUPER_GASP), but I only consider those examples for which Espresso-MV run~ing as an 

i 
exact minimizer was able to generate the minimum solution. This will allow 1e to com-

pare the relative efficiency of Espresso-MV in its exact and heuristic modes. ~he results 

are shown in Table 6.2.4. It is evident that Espresso-MV provides a high quality result 

for all of the examples for which I can generate a minimum solution - thei difference 

between Espresso-MV and Espresso-MV (exact) is about one percent. Also. Es)jlresso-MV 

is more than fifteen times faster than the exact minimizer on problems that ~oth alga-

rithms can solve. 

Espresso-MY Espresso-MY (strong) Espresso-MY (exad) 
type # solution time solution time solution tiline 

cubes !its (sec) cubes !its (sec) cubes !its (s•c) 

trivial 9 243 1683 23 243 1683 23 243 1683 20 
noncyclic 54 3371 34060 1366 3361 34223 2030 3360 34204 26 23 
cyclic-s 41 3463 36163 2532 3427 36658 4279 3395 36564 41 29 
totals 104 7077 71906 3920 7031 72564 6332 6998 72451 67< 73 

Table 6.2.5. Espresso-MV Exact Mode versus Heuristic Mode. 

6.2.4. Comparison of Prestol-11 and Espresso 

Without access to the program Prestol-11. direct comparisons have been dlifficult to 

make. I compare here the results from Espresso-MV (in both normal and strofg modes) 

and the results from Prestol-11 reported in [BaM85]. (The raw data comes froml the Ph.D. 

thesis of Marc Bartholomeus of Leuven University.) Table 6.2.6 presents resu~ts for 65 

examples from the industrial and mathematical class. (Results for some randoml examples 
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will be reported in the next section.) The times for Prestol-11, which is a Pascall program, 

are from a VAX 11/780 running VMS. The times for Espresso-MV are from I an Apollo 

DN660. 

' Espresso-MY Espresso-MY (strong) Pres tol-l~ 
type # solution time solution time solution i time 

cubes !its (sec) cubes !its (sec) cubes !its i (sec) 

trivial I 112 736 13 112 736 13.3 112 736 i 84 
noncyclic 29 2362 33217 1231 2354 33391 1340 2359 31858 1396 
cyclic-s 22 2110 21751 1266 2098 21935 2542 2108 21944 t 1321 
cyclic-us 6 1181 14392 1649 1178 14416 2457 1189 14329 i 1993 
too many primes 7 928 7544 2758 924 7632 3283 928 7887 2186 
total 65 6693 77640 6917 6666 78110 9635 6696 76754 6980 

Table 6.2.6. Comparison Between Espresso-MV and Prestol-11. 

We see that the results returned by Espresso-MV and Prestol-II are ve~y close in 

quality of solution and in the execution time required. However. I have r~ults from 

Prestol-II for only 13 of the 27 difficult problems. 

6.2.5. Random Example Results 

Included in the test set are 11 random examples provided by H. De Man of the 

University of Leuven. Results for some of these examples were first reported i4 [BaM84]. 

Each example is a truth table where the output value is randomly chosen from { 0, 1. 2} 

with probabilities Pot f , Pon , and Pdc respectively. Although I don't know the p:r1obabilities 

used to generate each example. I report below the observed percentages of minterms in the 

OFF-set. ON-set and DC-set for each example. 
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name in out %OFF-set %ON-set % DC-set 
bench 6 8 22.1 9.4 68.6 
bench] 9 9 22.5 9.3 68.2 
exJOJO 10 10 15.3 14.4 70.3 
exam 10 10 7.1 6.1 86.8 
fout 6 10 28.8 29.8 41.4 
pi 8 18 16.6 6.4 77.0 
p3 8 14 14.0 6.3 79.6 
test] 8 10 35.7 14.3 50.1 
test2 11 35 19.4 9.9 70.7 
test3 10 35 19.3 9.9 70.8 
test4 8 30 8.8 19.7 71.5 

i 

Table 6.2.8. Distribution of Minterms for the Random Examples. I 

97 

Note that the examples test2, and test3, and test4 are large examples. Also, ~11 of the 
i 

examples have extremely large don't-care sets. 

I next report the success for Espresso-MY (both normal and strong modes)l McBoole. 

Espresso-MY (exact mode). Prestol-II and MINI for each of these examples. 'fbe results 

for MINI and Prestol-II are quoted from [BaM85]. Results for SPAM, Presto and Phipmin 

were also reported in [BaM84]; however. each of these three programs did significantly 

worse than either Espresso-MY or Prestol-II. and hence these results are not rept1ated here. 

The results from Espresso-MY in the exact mode also include, in some caseS. a lower 

bound (returned from the minimum cover strategy outlined in Chapter 5). andi an upper 

bound (if the minimum solution was not achieved). 

i 

name MINI Prestol-11 Espresso-MY Espresso-MY Espresso-MY l\1cBoole 
strong exact 

bench 24 19 17 17 16 16 
bench] 177 148 140 128 111-126 -
exlOJO 389 246 302 264 - -
exam 86 59 70 66 52-? -
fout 48 42 42 42 40 -

pi 57 54 56 54 54 54 
p3 41 39 40 39 39 39 
test] 138 123 126 115 103-111 -
test2 - - 1118 995 - -

test3 922 552 558 491 - i -

test4 - - 120 104 - -

Table 6.2.9. Random Example Summary. 
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The results for Prestol-II have not been published for for examples test2land test4. 

There is a much greater variability among the different programs for these exam]j>les (espe-

cially for the largest random examples). 

In particular. the results for test3 were very surprising: Prestol-II and Es~resso-MV 

were very close to each other, and it was assumed they were both close to the tninimum. 

The addition of the SUPER_GASP strategy to Espresso-MV. however. produce~ a result 

with 61 fewer cubes then the best previously known result. Similar surprising tesults are 

seen in the data for test2. which. with the addition of the SUPER_GASP strategy produced 

a solution with 123 fewer cubes than without that strategy. However, running!Espresso
i 

MV in the strong mode greatly increased the execution time for this example. ~Espresso
t 

MV required 7 hours on an Apollo DN660). 

These random problems are especially difficult minimization problems becaUse of the 

large percentage of don't-care minterms. and the fact that the DC-set is scatteted. As a 

result. all of these examples have a very large number of prime implicants. :very few 

essential prime implicants. and most of them had cyclic constraints in the coveting prob

lem. Because these examples exhibit behavior much different from either the ~ndustrial 

examples or the mathematical functions. these results have been presented apar~ from the 

rest of the test set. 

6.3. Multiple-Valued Minimization Results 

6.3.1. Multiple-Valued Minimizer versus Binary-Valued with a DC-set 

As mentioned in Chapter 1, it is possible to use a binary-valued minimizer 1o minim-

ize a multiple-valued function. The problem is recast so that each value of a !multiple-

valued variable uses a single binary-valued variable, and a 1 in a cube for a !multiple

valued variable is represented as a 1 in the binary-valued cube. A don't-care set is added 

which allows any number of 1 's to appear simultaneously in the binary-varia1es which 

correspond to each of the multiple-valued variables. This technique is describet in more 

detail in [BMH84, Chapter 5]. 
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present results for a small collection of multiple-valued minimization' problems. 

Table 6.3.1 compares Espresso-MY running as a multiple-valued minimi*er versus 

translating the problem into an equivalent binary-valued minimization problem.i and using 

Espresso-MY as the binary-valued minimizer. The time reported for these exafr1ples was 
! 

measured on an IBM 3081. The examples DK14. DK16, PCC. and BLUE repr4ent prob-

lems that are being solved by the state-assignment program KISS [DBS85]. Thh have 7. 
I 

8, 12. and 93 states respectively. 

Solving a multiple-valued minimization problem using a binary-valued minimization 

tool can be inefficient. In the two largest cases. the binary-valued minimizer wa~ unable to 

complete the solution after 1 hour on an IBM 3081. 

Example States Binary-Valued Multiple-Valued 

Terms Time2 Terms Time2 

DK14 7 26 4.3 26 0.5 
DK16 8 55 108.6 55 1.6 
PCC 12 - (3600) 48 4.4 
BLUE 93 - (3600) 775 1053.0 

Table 6.3.1. Using a Binary-Valued Minimizer for Multiple-Valued Funcitions. 

The computation did not terminate for either PCC or BLUE within 
the 1 hour time limit. 

6.3.2. Multiple-Output Espresso-He versus Espresso-MV 

Table 6.3.2 compares the performance of Espresso-MY against the binajry-valued 
i 

minimizer Espresso-IIC for the 56 examples published in [BMH84]. 

Program 
Espresso-MV 
Espresso-IIC 

Cubes 
5993 
6001 

Literals 
60322 
60578 

560 
992 

Table 6.3.2. Espresso-MY versus Espresso-IIC. 

Comparing Espresso-IIC and Espresso-MY. the quality of the results is alm~st identi

cal. but the run-time has been reduced by almost fifty percent. This is a surprisj' ng result. 

2 Time in seconds measured on an IBM 3081 using the Waterloo C Compiler., 
Version 1.1 under the VM/CMS Operating System. · 
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as one might expect the generalization of the algorithms to multiple-valued v~riables to 

penalize the performance for binary-valued minimization problems. However~ the algo-

rithms are improved by the more uniform treatment of the output-part <lluring the 

multiple-valued minimization. For example. as described in Section 4.3. the O~F-set does 

not need to be represented with only a single-output active in each cube. Thislleads to a 
~ 

more compact representation of the OFF-set. and to a more efficient EXPAND !procedure. 
I 

Likewise. Espresso-IIC effectively would not split against the output part untillreaching a 

leaf of one of the recursive procedures (e.g .. TAUTOLOGY). By allowing the ~rogram to 

split against the output at any step of the procedure. the heuristics of choosin~ the split-

ting variable leads to a more efficient choice of splitting variables. I 
I 
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i 

name type primes essen Espresso-MY McBoole I 
cubes lits time cubes 1its . time 

Sxpl cyclic-s 390 8 63 360 55 * 64 0 1322 
9sym cyclic-us 1680 0 0 0 18000 0 0 118000 
accpla primes 0 0 0 0 18000 0 0 )18000 
add6 noncyclic 8568 153 355 2551 4546 355 2935 3235 
addm4 cyclic-s 1122 24 189 1405 1526 * 191 1508 3477 
adr4 noncyclic 397 35 75 415 34 75 467 12 
al2 noncyclic 9179 16 0 0 18000 66 427 3017 
alcom noncyclic 4657 16 40 223 4596 40 224 1156 
alul trivial 780 19 19 60 94 19 60 195 
alu2 noncyclic 434 36 68 347 85 68 369 64 
alu3 noncyclic 540 27 64 352 94 64 367 100 
amd cyclic-s 457 32 66 658 93 * 66 692 260 
apla noncyclic 201 0 25 232 52 25 228 11 
blO cyclic-s 938 51 100 1009 409 100 1081 55 
bll noncyclic 44 22 27 181 5 27 187 2 
bl2 cyclic-s 1490 2 41 233 715 0 0 118000 
b2 noncyclic 928 54 104 1970 906 104 1977 1 41 
b3 cyclic-s 3056 123 210 2506 6399 0 0 118000 
b4 cyclic-us 6455 0 0 0 18000 0 0 18000 
b7 noncyclic 44 22 27 181 5 27 187 I 2 
b9 noncyclic 3002 48 119 873 687 119 938 558 
bcO cyclic-us 6596 37 0 0 18000 0 0 18000 
be a noncyclic 305 144 180 3281 1627 180 3454 8 
bcb noncyclic 255 137 155 2763 728 155 2799 7 
bee cyclic-s 237 119 137 2530 892 137 2570 6 
bed noncyclic 172 100 117 2026 444 117 2057 5 
bcd.div3 trivial 13 9 9 38 1 9 38 1 
bench cyclic-s 391 0 16 102 43 16 125 13 
bench] cyclic-us 5972 0 0 0 18000 0 0 18000 
brl non cyclic 29 17 19 254 5 19 257 1 
br2 noncyclic 27 9 13 172 4 13 174 1 
chkn cyclic-s 671 86 140 1742 629 140 1770 893 
clpl trivial 143 20 20 75 6 20 75 11 
co14 trivial 14 14 14 210 2 14 210 1 
cps cyclic-s 2487 57 157 2849 2370 * 162 3154 10689 
del noncyclic 22 3 9 58 2 9 57 1 
dc2 noncyclic 173 18 39 260 11 39 275 3 
dekoder cydic-s 26 3 9 47 2 9 52 1 
dist cyclic-s 401 23 120 875 68 120 913 18 
dkl7 noncyclic 111 0 18 177 29 18 137 11 
dk27 cyclic-s 82 0 10 61 28 10 46 12 
dk48 cyclic-s 157 0 21 224 190 0 0 !18000 
exlOJO primes 0 0 0 0 18000 0 0 i18000 
ex4 primes 0 0 0 0 18000 0 0 ~8000 
exS cyclic-us 2532 28 0 0 18000 0 0 118000 

Table 6.1. Raw Data for Espresso-MY I McBoole Comparison. 
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type primes 
Espresso-MY McBoole 1 

name essen 
cubes lits time cubes lits time 

ex7 noncyclic 3002 48 119 873 709 119 938 540 
exam cyclic-us 4955 0 0 0 18000 0 0 18000 
exep noncyclic 558 82 108 1278 3318 108 1281 26 
exp noncyclic 238 30 56 559 75 56 662 5 
exps cyclic-s 852 56 132 1928 346 * 135 2099 4818 
fSlm cyclic-s 561 13 76 401 64 76 450 25 
fout cyclic-s 436 2 40 306 399 * 41 392 I 2762 I 

gary cyclic-s 706 60 107 1118 180 107 1162 I 21 
ibm primes 0 0 0 0 18000 0 0 !18000 
inO cyclic-s 706 60 107 1118 162 107 1149 17 
in] noncyclic 928 54 104 1970 892 104 1977 I 38 
in2 cyclic-s 666 85 134 1430 189 134 1453 i 65 
in3 noncyclic 1114 44 74 772 616 74 808 

I 
259 

in4 cyclic-s 3076 118 211 2539 6945 211 2635 2331 
inS noncyclic 1067 53 62 741 258 62 746 I 36 
in6 noncyclic 6174 40 54 547 3745 54 553 111819 
in7 noncyclic 2112 31 54 427 950 54 434 1305 
inc cyclic-s 124 12 29 196 10 29 212 ! 3 i 
intb cyclic-s 6522 186 0 0 18000 629 6342 I 7595 
jbp primes 0 0 0 0 18000 0 0 118000 
l8err cyclic-s 142 15 50 304 23 *51 327 I 64 
life noncyclic 224 56 84 756 15 84 756 11800~ lin. rom cyclic-us 1087 8 0 0 18000 0 0 
log8mod cyclic-s 105 13 38 225 9 38 236 ' 2 
luc noncyclic 190 14 26 388 37 26 416 5 
ml noncyclic 59 6 19 217 5 19 223 1 
m181 cyclic-s 1636 2 41 233 866 0 0 18000 
m2 cyclic-s 243 7 47 670 39 47 686 22 
m3 cyclic-s 344 4 62 841 63 * 63 861 1438 
m4 cyclic-s 670 11 101 1241 1049 * 103 1360 ;12919 
mainpla primes 0 0 0 0 18000 0 0 :18000 
mark] cyclic-s 208 1 19 265 527 0 0 '18000 
max1024 cyclic-us 1278 14 0 0 18000 0 0 18000 
maxl28 cyclic-s 469 6 78 1174 157 * 83 1105 13776 
max46 trivial 49 46 46 441 7 46 441 1 
max512 cyclic-s 535 20 133 1006 519 * 136 1069 9129 
misg primes 0 0 0 0 18000 0 0 ,18000 
mish primes 0 0 0 0 18000 0 0 18000 
misj primes 0 0 0 0 18000 0 0 18000 
mlp4 cyclic-s 606 12 121 865 4722 * 123 955 3326 
mp2d cyclic-s 469 13 30 201 278 0 0 ;18000 
newapla noncyclic 113 9 17 102 7 17 106 4 
newaplal noncyclic 31 9 10 76 2 10 76 1 
newapla2 trivial 7 7 7 49 1 7 49 1 
new byte trivial 8 8 8 48 1 8 48 1 

Table 6.1. Raw Data for Espresso-MY I McBoole Comparison (cont.). 
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name type primes essen 
Espresso-MV McBool~ 

cubes lits time cubes lits time 
newcond noncyclic 72 18 31 239 5 31 239 2 
newcplal cyclic-s 170 22 38 263 24 38 303 16 
newcpla2 noncyclic 38 14 19 129 4 19 129 1 
newcwp noncyclic 23 7 11 50 2 11 53 1 
new ill cyclic-s 11 5 8 50 1 8 49 1 
newtag trivial 8 8 8 26 1 8 26 i 1 
newtpla noncyclic 40 16 23 199 3 23 201 1 
newtplal noncyclic 6 3 4 37 1 4 37 1 
newtpla2 noncyclic 23 4 9 69 2 9 69 1 
newxcplal noncyclic 191 18 39 309 31 39 336 6 
opa cyclic-s 477 22 77 1121 234 * 78 1369 2951 
pl noncyclic 287 25 54 404 165 54 612 20 
p3 noncyclic 185 22 39 280 79 39 324 10 
p82 noncyclic 48 16 21 149 4 21 156 1 
pdc primes 0 0 0 0 18000 0 0 18000 
pope.rom cyclic-s 593 12 59 1472 347 * 61 1427 17167 
prom] noncyclic 9326 182 0 0 18000 472 11228 8228 
prom2 cyclic-us 2635 9 0 0 18000 0 0 18000 
radd noncyclic 397 35 75 415 24 75 465 10 
rckl noncyclic 302 6 32 657 67 32 657 3043 
rd53 noncyclic 51 21 31 173 2 31 175 1 
rd73 noncyclic 211 106 127 903 18 127 904 3 
rise noncyclic 46 22 28 187 4 28 191 i 1 
root cyclic-s 152 9 57 381 26 57 401 

I 

5 
ryy6 trivial 112 112 112 736 7 112 736 61 
sex noncyclic 99 13 21 105 6 21 105 2 
shift primes 0 0 0 0 18000 0 0 18000 
signet primes 0 0 0 0 18000 0 0 18000 
soar.pla primes 0 0 0 0 18000 0 0 18000 
spla cyclic-us 4972 33 0 0 18000 0 0 18000 
sqn noncyclic 75 23 38 226 6 38 233 1 
sqr6 cyclic-s 205 3 47 274 114 * 49 299 1322 
symlO cyclic-s 3150 0 210 1470 9182 0 0 18000 
tl cyclic-us 15135 7 0 0 18000 0 0 18000 
t2 noncyclic 233 25 52 363 39 52 386 8 
t3 noncyclic 42 30 33 250 4 33 251 1 
t4 noncyclic 174 0 16 91 68 16 97 14 
test] cyclic-us 2407 0 0 0 18000 * 116 1160 10727 
test2 primes 0 0 0 0 18000 0 0 18000 
test3 primes 0 0 0 0 18000 0 0 18000 
test4 cyclic-us 6139 0 0 0 18000 0 0 18000 
ti primes 0 0 0 0 18000 0 0 18000 
tial cyclic-us 7145 220 0 0 18000 * 575 5355 11346 
tms cyclic-s 162 13 30 415 25 30 451 4 
tslO primes 0 0 0 0 18000 0 0 18000 

Table 6.1. Raw Data for Espresso-MV I McBoole Comparison (cont.). 
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type primes 
Espresso-MV McBoole 

name essen 
cubes lits time cubes lits 1irne 

vg2 noncyclic 1188 100 110 914 765 110 942 616 
vtxl noncyclic 1220 100 110 1074 259 110 1094 562 
wim cyclic-s 25 3 9 47 2 9 54 1 
xldn noncyclic 1220 100 110 1074 257 110 1094 568 
x2dn primes 0 0 0 0 18000 0 0 1~000 
x6dn cyclic-s 916 60 81 817 1848 81 820 i 150 
x7dn primes 0 0 0 0 18000 0 0 1rooo 
x9dn noncyclic 1272 110 120 1258 452 120 1298 611 
xparc primes 0 0 0 0 18000 0 0 1~000 
z4 noncyclic 167 35 59 311 11 59 333 3 

Table 6.1. Raw Data for Espresso-MY I McBoole Comparison (cont.). 

* indicates McBoole terminated branching after 10 levels; hence. the solution returned is 
not guaranteed optimal. 

Times for both Espresso-MY and McBoole are for an Apollo DN660 wit~ 4 mega-
bytes of memory using Version 3.12 of the C Compiler. · 

McBoole detected that it had solved 5xp1 incorrectly: the problem was rtported to 
the author. and the program was subsequently corrected. 

McBoole and Espresso-MY disagree on the number of prime implicantsi for l8err 
(McBoole has 16, and Espresso-MY has 15). The problem is being investigat~d by the 
author of McBoole. 
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Espresso-MY Espresso-MY Presto1-II 
name (strong mode) 

cubes lits time cubes 1its time cubes lits titne 
Sxpl 63 358 27 64 415 30 
9sym 85 595 30 84 588 37 86 602 98 
accpla 175 2750 924 175 2741 956 
add6 355 2551 144 355 2581 691 
addm4 200 1500 98 192 1441 219 
adr4 75 415 19 75 417 22 75 415 37 
all 66 427 21 66 427 22 
alcom 40 223 10 40 224 10 
alul 19 60 1 19 60 2 
alul 68 347 18 68 347 21 i 
alu3 66 347 14 64 360 26 I 
amd 66 660 50 66 658 53 I 
apla 25 221 9 25 238 10 25 223 118 
blO 100 1000 35 100 1009 42 101 1004 42 
bll 27 181 7 27 182 7 I 
bl2 42 208 27 41 234 59 42 246 

1;: bl 106 1940 51 104 1972 49 104 1893 
b3 211 2511 122 211 2512 149 211 2511 02 
b4 54 546 35 54 546 37 54 546 122 
b7 27 181 7 27 182 7 27 181 i 5 
b9 119 873 22 119 873 33 119 873 53 
bcO 178 2061 197 177 2088 260 
be a 180 3266 300 180 3285 307 181 2618 67 
bcb 156 2778 159 155 2762 170 155 2191 595 
bee 137 2530 177 137 2533 179 138 2034 40 
bed 117 2026 96 117 2026 98 
bcd.div3 9 38 1 9 38 1 
bench 18 100 8 17 100 22 19 112 5 
bench] 136 1187 161 128 1147 394 148 1245 705 
brl 19 254 3 19 254 3 20 268 2 
brl 13 172 3 13 172 3 14 188 2 
chkn 140 1739 60 140 1764 70 140 1740 liS 
clpl 20 75 2 20 75 2 
col4 14 210 1 14 210 1 
cps 163 2824 344 159 2857 508 
del 9 54 2 9 58 2 
del 39 260 5 39 262 6 40 264 5 
dekoder 9 47 2 9 48 3 9 53 1 
dist 121 875 49 121 882 58 120 872 61 
dk17 18 135 7 18 142 8 
dk17 10 46 5 10 61 7 
dk48 22 143 23 22 211 31 
exlOIO 283 2743 1270 264 2623 2461 246 2667 2~25 
ex5 74 1900 115 72 1861 417 76 2014 69 
ex? 119 873 22 119 873 33 

Table 6.2. Raw Data for Espresso-MY I Prestol-11 Comparison. 
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Espresso-MV Espresso-MV Prestol-II 
name (strong mode) 

cubes lits time cubes lits time cubes lits ti!me 
exep 108 1274 61 108 1276 64 109 1221 55 
exp 59 558 24 56 560 31 56 560 ,13 
exps 134 1959 129 133 1946 145 135 2152 49 
fSlm 77 400 32 76 399 45 76 405 49 
fout 44 315 31 42 318 36 42 335 ,22 
gary 107 1116 30 107 1135 39 107 1119 :25 
ibm 173 1055 35 173 1055 36 173 2191 115 
inO 107 1116 37 107 1133 45 
in] 106 1940 51 104 1972 49 104 1893 20 
in2 136 1420 28 134 1437 58 137 1507 36 
in3 74 773 30 74 775 32 74 754 23 
in4 212 2543 105 212 2561 121 
inS 62 741 13 62 742 14 62 739 14 
in6 54 547 11 54 547 12 
in7 54 427 12 54 429 13 
inc 30 198 7 29 195 9 
intb 629 5867 671 629 5919 1124 
jbp 122 1027 134 122 1030 151 123 1036 139 
l8err 51 313 29 51 319 30 
life 84 756 18 84 756 20 
lin. rom 128 3202 269 128 3202 278 
log8mod 38 228 6 38 231 7 
luc 26 394 11 26 388 13 26 394 4 
ml 19 217 4 19 217 6 19 217 2 
m181 42 213 27 41 233 55 42 245 21 
m2 47 648 29 47 640 34 47 672 6 
m3 65 770 45 63 836 54 64 834 12 
m4 107 1194 126 104 1172 153 105 1372 25 
mainpla 172 8759 373 172 8761 650 
mark] 19 154 219 19 282 256 
max1024 274 2273 508 267 2266 678 
max128 82 1070 89 79 1108 111 
max46 46 441 2 46 441 2 
max512 143 1072 116 137 1058 141 
misg 69 247 15 69 279 23 69 247 59 
mish 82 238 26 82 242 33 
misj 35 102 4 35 102 6 
mlp4 128 893 60 127 899 73 124 878 62 
mp2d 31 198 22 31 201 34 34 215 44 
newapla 17 102 3 17 102 3 
newaplal 10 76 1 10 79 1 
newapla2 7 49 1 7 49 1 
new byte 8 48 1 8 48 I 
newcond 31 239 2 31 239 3 
newcplal 38 263 7 38 264 9 

Table 6.2. Raw Data for Espresso-MY I Prestol-11 Comparison (cont.). 
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Espresso-MY Espresso-MY Prestol-II i 
name (strong mode) 

cubes lits time cubes lits time cubes lits time 

newcpla2 19 129 2 19 130 2 
newcwp 11 50 1 11 52 1 
new ill 8 50 1 8 52 1 
newtag 8 26 1 8 26 1 
newtpla 23 199 2 23 200 2 
newtplal 4 37 1 4 37 1 
newtpla2 9 69 1 9 69 1 
newxcplal 39 282 11 39 283 15 
opa 79 1097 111 79 1095 136 79 1144 50 
p82 21 149 3 21 149 3 ! 

pdc 123 1126 2133 119 1172 2581 122 1097 1611 
pope.rom 62 1345 90 59 1418 140 
prom] 472 11225 288 472 11306 320 472 11237 200 
prom2 287 5610 635 287 5610 662 288 5353 50 
radd 75 415 9 75 417 15 75 415 24 
rckl 32 657 50 32 657 49 32 657 11 
rd53 31 175 2 31 173 3 31 173 2 
rd73 127 903 14 127 903 15 ' : 

rise 28 187 5 28 187 5 
root 57 383 21 57 387 23 57 384 14 
ryy6 112 736 13 112 736 13 112 736 84 
sex 21 105 2 21 109 2 
shift 100 493 6 100 493 6 100 493 14 
signet 119 636 356 119 638 360 
soar.pla 352 3049 1053 352 3094 1197 
spla 262 3419 821 260 3466 964 
sqn 38 230 5 38 228 6 38 228 8 
sqr6 49 266 13 49 280 18 49 268 17 
symlO 210 1470 98 210 1470 1093 210 1470 282 
tl 102 612 84 102 628 120 102 650 95 
t2 53 362 17 53 361 19 52 359 21 
t3 33 250 4 33 251 4 33 251 4 
t4 16 89 27 16 94 45 17 89 15 
ti 213 2572 425 213 2579 478 213 1799 230 
tial 579 5129 751 579 5183 1185 583 5164 1659 
tms 30 486 9 30 416 18 
tslO 128 1024 8 128 1024 8 128 1024 18 
vg2 110 914 17 110 914 19 110 914 60 
vtxl 110 1074 14 110 1074 16 
wim 9 43 2 9 43 3 
xldn 110 1074 14 110 1074 16 110 1074 47 
x2dn 104 564 53 104 565 61 
x6dn 81 814 22 81 823 24 81 819 47 
x7dn 538 4600 524 538 4603 651 ; 

Table 6.2. Raw Data for Espresso-MY I Prestol-11 Comparison (cont.).i 
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Espresso-MY Espresso-MY Prestol-II 
name (strong mode) 

cubes lits time cubes !its time cubes lits tim~ 

x9dn 120 1258 17 120 1258 18 120 1258 5~ 
xparc 254 7476 680 254 7503 728 
z4 59 311 8 59 311 9 59 311 1!7 

i 
Table 6.2. Raw Data for Espresso-MY I Prestol-11 Comparison (cont.)l 

i 
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Data for Prestol-11 comes from the PhD thesis of Marc Bartholomeus. Leuvtn Univer-
sity. 1 

Time for Prestol-11 is on a VAX 11/780 under VMS in seconds; Time fo~ Espresso-
MY is on an Apollo DN660 in seconds. I 

There is the possibility that the total number of literals for ibm is inl error for 
Prestol-11. The number of literals is very large. and happens to equal the yumber of 
literals on the line immediately above in Table 4.4 of Bartholomeus' thesis. 1 

In [BaM84]. a result was reported 
Espresso-MY running in the exact mode. 
corrected by the author of Prestol-11. 

for m2 which was later proven in_torrect by 
The error was subsequently acknow,edged and 
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NAME 
espresso- Boolean Minimization 

SYNOPSIS 
espresso [type] [file] [options] 

DESCRIPTION 
Espresso takes as input a two-level representation of a two-valued (or a multipli. valued) 
Boolean function. and produces a minimal equivalent representation. The algorit ms used 
are new and represent an advance in both speed and optimality of solution in heuristic 
Boolean minimization. 

Espresso reads the file provided (or standard input if no files are specified). perf rms the 
minimization. and writes the minimized result to standard output. Espresso auto atically 
verifies that the minimized function is equivalent to the original function. Opti ns allow 
for using an exact minimization algorithm. for choosing an optimal phase assig ent for 
the output functions, and for choosing an optimal assignment of the inputs to input 
decoders. 

The default input and output file formats are compatible with the Berkeley stan~rd for
mat for the physical description of a PLA. The input format is described in 1detail in 
espresso(5). Note that the input file is a logical representation of a set of Bool$n equa
tions. and hence the input format differs slightly from that described in pla(5D (which 
provides for the physical representation of a PLA). The input and output forDlats have 
been expanded to allow for multiple-valued logic functions. and to allow for the 
specification of the don't care set which will be used in the minimization. 

Type specifies the logical format for the function. The allowed types are -f. -r.i -fr. -fd. 
-dr, and -fdr which have the same meanings assigned in espresso(5). 

The command line options described below can be specified anywhere on the conuband line 
and must be separated by spaces. A complete list of the command line optiorul is given 
below. Be warned that many of the command line options are for internal use arid debug
ging only. 

-d. Verbose detail describing the progress of the minimization is written to istandard 
output. Useful only for those familiar with the algorithms used. 

-do [s] This option executes subprogram [s]. Some of the more useful ones ~e listed 
separately below. The remaining subprograms (contain. dlmerge_jn. dln:ierge_9ut. 
disjoint. dsharp. intersect. minterms. primes. sharp, union. unravel: esse~. expand. 
irred, make_sparse. mincov. reduce. taut. super _gasp) are intended tor those 
heavily into manipulating Boolean functions. 

-do check 
Checks that the function is a partition of the entire space (i.e .. that tbe ON-set. 
OFF-set and DC-set are pairwise disjoint, and that their union is the Univ~se) 

-do dlmerge 
Performs a quick distance-1 merge on the input file to reduce the nlJmber of 
terms. Useful when the input file is very large (e.g .. a truth table with ~ore than 
1000 terms) because distance-! merge is O(n log n) rather than Espressd which is 
O(n • n). It is expected that the output would then be run through e!fi>resso to 
complete the minimization. 

-do echo 
Implies '"-out fdr" and echoes the function to standard output. This c$ be used 
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to compute the complement of a function. 

-do exact 
Exact minimization algorithm (guarantees mmtmum number of product terms. 
and heuristically minimizes number of literals). Potentially expensive. 

-do map 
Draw the Karnaugh maps for a function. 

-do opo Perform output phase optimization (i.e .. determine which functions to !comple
ment to reduce the number of terms needed to implement the functionD. After 
choosing an assignment of phases for the outputs. the function is minimizcki. 

-do opoall 
Minimize the function with all possible phase assignments. The option cap be fol
lowed by three integers which specify the first and last outputs to be use~(count
ing from 0). and the third integer is 0 to use the heuristic minimizer in es resso or 
1 to use the exact minimizer in espresso. Be warned that opoall re uires an 
exponential number of minimizations ! : 

• i 
-do~rr ! 

~boose an assignment of the inputs to two-bit decoders. and minimize +e func-
tlOn. : 

-do ~irall 
Minimize the function with all possible assignments of inputs to two-bit tiecoders. 
The option can be followed by an integer which is 2 to use the heuristic minimizer 
of espresso. 3 to use the exact minimizer of espresso. and 4 to perform output 
phase assignment (as in the -do opo option) for each assignment. Be watned that 
pairall requires an exponential number of minimizations ! 

-do single_output 
Minimize each function one at a time as a single-output function. TermS! will not 
be shared among the functions. 

-do single_output_best 
Minimize each function one at a time as a single-output function. but choose the 
function or its complement based on which has fewer terms. 

-do stats 
Provide simple statistics on the size of the function. 

-do verify 
Reads two file names from the command line and verifies that the two functions 
are Boolean equivalent. 

-do PLA verify 

~t 

-fast 

-kiss 

-ness 

7th Edition 

Reads two filenames from the command line, assumes that each speci~es names 
for the inputs and outputs. permutes columns so that the two PLA's have the 
same order for the inputs and outputs. and then checks Boolean e uivalence 
between the two functions. 

Normally comments are echoed from the input file to the output file. Thls options 
discards any comments in the input file. 

Stop after the first EXPAND and IRREDUNDANT operations (i.e .. do nPt iterate 
over the solution). 

Sets up a kiss-style minimization problem. 

Essential primes will not be detected and removed from the minimizatio1. 
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-nirr The result will not necessarily be made irredundant in the final step which 
removes redundant literals. I 

-nunwrap 
The ON-set will not be unwrapped before beginning the minimization. 

-help Provides a quick summary of the available command line options. 

-onset Recompute the ON-set before the minimization. Useful when the PLA ha~ a large 
number of product terms (e.g .. an exhaustive list of minterms). · 

-out [s] Selects the output format. By default. only the ON-set (i.e .. type f) if output 
after the minimization. [s] can be one of f. d. r. fd. dr. fr. or fdr to st1lect any 
combination of the ON-set (f). the OFF-set (r) or the DC-set (d). [s] m1 also be 
eqntott to output algebraic equations acceptable to eqntott(1). or pleasu to out
put an unmerged PLA (with the lahel and .group keywords) acceptable o pleas
ure( 1 ). 

-pos Swaps the ON-set and OFF-set of the function after reading the function. ,This can 
be used to minimize the OFF-set of a function. .phase in the input file lean also 
specify an arbitrary choice of output phases. i 

-s Will provide a short summary of the execution of the program includin~ the ini
tial cost of the function. the final cost. and the computer resources used. / 

-strong Uses an alternate strategy for the LAST_GASP step which is more expenfive. but 
occasionally provides better results. 

1 

-t Will produce a trace showing the execution of the program. After each *ain step 
of the algorithm. a single line is printed which reports the processor ti1ne used. 
and the current cost of the function. 

-x Suppress printing of the solution. 

DIAGNOSTICS 
espresso will issue a warning message if a product term spans more than one line. • Usually 
this is an indication that the number of inputs or outputs of the function is' specified 
incorrect I y. 

SEE ALSO 
kiss(1). pleasure(!), pla(5). espresso(5) 

R. Brayton. G. Hachtel. C. McMullen, and A. Sangiovanni-Vincentelli. Logic Min~mization 
Algorithms for VLSI Synthesis. Kluwer Academic Publishers. 1984. i 

I 
R. Rudell. A. Sangiovanni-Vincentelli, "Espresso-MY: Algorithms for Multipl)e-Valued 
Logic Minimization." Proc. Cust. Int. Circ. Conf.. May 1985. 

R. Rudell. "Multiple-Valued Minimization for PLA Synthesis." Master's Report, yniversity 
of California. Berkeley. June 1986. ' 

AUfHOR 
Richard Rudell 

BUGS 
Always passes unrecognized options straight from the input file to standard outp~t (some-
times this isn't what you want). · 

There are a lot of options. but typical use doesn't need them. 
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NAME 
espresso-- input file format for espresso(!) 

DESCRIPTION 
Espresso accepts as input a two-level description of a Boolean switching function.! This is 
described as a character matrix with keywords imbedded in the input to specify t* size of 
the matrix and the logical format of the input function. Comments are allowed whhin the 
input by placing a pound sign ( #) as the first character on a line. Comments and ~nrecog
nized keywords are passed directly from the input file to standard output. Ant white
space (blanks. tabs. etc.). except when used as a delimiter in an imbedded comljnand. is 
ignored. It is generally assumed that the PLA is specified such that each row of lthe PLA 

fits on a single line in the input file. · 

KEYWORDS : 

The following keywords are recognized by espresso. The list shows the probable ~rder of 
the keywords in a PLA description. [d] denotes a decimal number and [s] denotfs a text 
string. , 

.i [d] Specifies the number of input variables . 

• o [d] Specifies the number of output functions . 

• type [s] 

• phase [s] 

• pair [d] 

.kiss 

·P [d] 

.e (.end) 

Sets the logical interpretation of the character matrix as described below 
under "Logical Description of a PLA". This keyword must come before any 
product terms. [s] is one of f. r. fd. fr. dr. or fdr . 

[s] is a string of as many O's or l's as there are output functions. Iv specifies 
which polarity of each output function should be used for the miniJmization 
(a 1 specifies that the ON-set of the corresponding output function spould be 
used, and a 0 specifies that the OFF-set of the corresponding output !function 
should be minimized) . 

Specifies the number of pairs of variables which will be paired toget».er using 
two-bit decoders. The rest of the line contains pairs of numbe~s which 
specify the binary variables of the PLA which will be paired toget:tier. The 
binary variables are numbered starting with 1. The PLA will be resjhaped so 
that any unpaired binary variables occupy the leftmost part of t~e array. 
then the paired multiple-valued columns. and finally any multiple-valued 
variables . 

Sets up for a kiss-style minimization. 

Specifies the number of product terms. The product terms (one per line) fol
low immediately after this keyword. Actually. this line is ignored) and the 
".e". ".end". or the end of the file indicate the end of the input descrirltion . 

Marks the end of the PLA description. 

LOGICAL DESCRIPTION OF A PLA 
When we speak of the ON-set of a Boolean function, we mean those minterths which 
imply the function value is a 1. Likewise. the OFF-set are those terms which iJn.ply the 
function is a 0. and the DC-set (don't care set) are those terms for which the f4nction is 
unspecified. A function is completely described by providing its ON-set, OFF-se~ and De

set. Note that all minterms lie in the union of the ON-set. OFF-set and DC-set,iand that 
the ON-set. OFF-set and DC-set share no minterms. 
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The purpose of the espresso minimization program is to find a logically equivalent set of 
product-terms to represent the ON-set and optionally minterms which lie in the DC-set. 
without containing any minterms of the OFF-set. 

A Boolean function can be described in one of the following ways: 

1) By providing the ON-set. In this case. espresso computes the OFF-set as the! comple
ment of the ON-set and the DC-set is empty. This is indicated with the 1teyword 
.type f in the input file. or -f on the command line. 

2) By providing the ON-set and DC-set. In this case. espresso computes the OF'F-set as 
the complement of the union of the ON-set and the DC-set. If any minterm 
belongs to both the ON-set and DC-set. then it is considered a don't care ~nd may 
be removed from the ON-set during the minimization process. This is ~ndicated 
with the keyword .type fd in the input file. or -fd on the command line. ' 

3) By providing the ON-set and OFF-set. In this case. espresso computes the Il>C-set as 
the complement of the union of the ON-set and the OFF-set. It is an error for any 
minterm to belong to both the ON-set and OFF-set. This error may not beldetected 
during the minimization. but it can be checked with the subprogram "-db check" 
which will check the consistency of a function. This is indicated with the key
word on the command line. 

4) By providing the ON-set. OFF-set and DC-set. This is indicated with the ~eyword 
.type fdr in the input file. or -fdr on the command line. 

If at all possible. espresso should be given the DC-set (either implicitly or explicitly) in 
order to improve the results of the minimization. 

A term is represented by a "cube" which can be considered either a compact repre~entation 
of an algebraic product term which implies the function value is a 1. or as a repre~entation 
of a row in a PLA which implements the term. A cube has an input patt which 
corresponds to the input plane of a PLA. and an output part which corresponds toi the out
put plane of a PLA (for the multiple-valued case. see below). 

SYMBOLS IN THE PLA MATRIX AND THEIR INTERPRFI'ATION 
Each position in the input plane corresponds to an input variable where a 0 illlplies the 
corresponding input literal appears complemented in the product term, a 1 ~plies the 
input literal appears uncomplemented in the product term. and - implies the input literal 
does not appear in the product term. 

With logical type f. for each output. a 1 means this product term belongs to tl¢ ON-set. 
and a 0 or - means this product term has no meaning for the value of this function. This 
logical type corresponds to an actual PLA where only the ON-set is actually impletnented. 

With logical type fd (the default). for each output. a 1 means this product term belongs to 
the ON-set. a 0 means this product term has no meaning for the value of this fundtion, and 
a- implies this product term belongs to the DC-set. 

With logical type fr, for each output. a 1 means this product term belongs to the iON-set, a 
I 

0 means this product term belongs to the OFF-set. and a - means this product te:r1m has no 
meaning for the value of this function. 

With logical type fdr. for each output. a 1 means this product term belongs to tije ON-set. 
a 0 means this pro_?uct term belongs to the OFF-set. a- means this product term "lklongs to 
the DC-set. and a implies this product term has no meaning for the value of ~his func
tion. 
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Note that regardless of the logical type of PLA. a- implies the product term has po mean
ing for the value of this function. 2 is allowed as a synonym for -. 4 is alloWed for 1. 
and 3 is allowed for - . Also. the logical PLA type can also be specified on the tommand 
line. 

MULTIPLE-VALUED FUNCI'IONS 
Espresso will also minimize multiple-valued Boolean functions. There can be an !arbitrary 
number of multiple-valued variables. and each can be of a different size. If ther~ are also 
binary-valued variables. they should be given as the first variables on the line (fbr ease of 
description). Of course. it is always possible to place them anywhere on the line as a 
two-valued multiple-valued variable. The function size is described by the imbedded 
option 

.mv [num_var] [num_binary_var] [s1] ••• [sn] i 

Sp~~ifres the number of variables (num..:.:.:v,ar~), the number of binaryl~ariables 
(num_binary_var), and the size of each of the multiple-valued var~bles (sl 
through sn). 

A multiple-output binary function with ni inputs and no outputs would be specified as 
".mv ni+l ni no." ".mv" cannot be used with either ".i" or ".o" - use one or the other to 
specify the function size. 

The binary variables are given as described above. Each of the multiple-valued I variables 
are given as a bit-vector of 0 and 1 which have their usual meaning for multi¢.e-valued 
functions. The last multiple-valued variable (also called the output) is interlPreted as 
described above for the output (to split the function into an ON-set. OFF-set and DC-set). 
A vertical bar I may be used to separate the multiple-valued fields in the input fil~. 

If the size of the multiple-valued field is less than zero, than a symbolic field is idterpreted 
from the input file. The absolute value of the size specifies the maximum npmber of 
unique symbolic labels which are expected in this column. The symbolic ~abels are 
white-space delimited strings of characters. 

To perform a kiss-style encoding problem. either the keyword .kiss must be in t.jhe file, or 
the -kiss option must be used on the command line. Further. the third to last v~iable on 
the input file must be the symbolic "present state". and the second to last variablb must be 
the "next state". As always. the last variable is the output. The symbolic "next state" 
will be hacked to be actually part of the output. 
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EXAMPLE #1 
A two-bit adder which takes in two 2-bit operands and produces a 3-bit resul~ can be 
described completely in minterms as: 

# 2-bit by 2-bit binary adder (with no carry input) 
. i 4 
.o 3 
. type fr 
.pair 2 (1 3) (2 4) 
.phase 011 
()() ()() 000 
00 01 001 
00 10 010 
00 11 011 
01 ()() 001 
01 01 010 
01 10 011 
01 11 100 
10 ()() 010 
10 01 011 
10 10 100 
10 11 101 
11 00 011 
11 01 100 
11 10 101 
11 11 110 
.end 

The logical format for this input file (i.e .. type fr) is given to indicate that the file! contains 
both the ON-set and the OFF-set. Note that in this case. the zeros in the output plane are 
really specifying "value must be zero" rather than "no information". 

The imbedded option .pair indicates that the first binary-valued variable should be paired 
with the third binary-valued variable. and that the second variable should be pa~red with 
the fourth variable. The function will then be mapped into an equivalent multipie-valued 
minimization problem. · 

The imbedded option .phase indicates that the positive-phase should be used for t~e second 
and third outputs. and that the negative phase should be used for the first output.! 
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EXAMPLE #2 
This example shows a description of a multiple-valued function with 5 binary! variables 
and 3 multiple-valued variables (8 variables total) where the multiple-valued/variables 
have sizes of 4 27 and 10 (note that the last multiple-valued variable is the "output" and 
also encodes the ON-set. DC-set and OFF-set information). , 

7th Edition 

.mv 8 5 4 2 7 10 
o-o1oltoooltoooooooooooooooooooooooooolootoodoooo 
10-1011ooolo1ooooooooooooooooooooooooo11oooodoooo 
0-111 110001001000000000000000000000000100010doooo 
o-10-11ooolooo1ooooooooooooooooooooooo1ooo1odoooo 
00000110001000010000000000000000000000110000 0000 
00010110001000001000000000000000000000100100 0000 
01001110001000000100000000000000000000100000 0010 
0101-110001000000010000000000000000000100000 0000 
0-0-0110001000000001000000000000000000110000 0000 
10000110001000000000100000000000000000100000 0000 
11100110001000000000010000000000000000100100 0000 
10-10110001000000000001000000000000000100000 0000 
11111110001000000000000100000000000000100100 0000 

I 
111111000110000000~0000000000000000001100000doooo 
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EXAMPLE #3 
This example shows a description of a multiple-valued function setup for kiss-style 
minimization. There are 5 binary variables, 2 symbolic variables (the present-l>tate and 
the next-state of the FSM) and the output (8 variables total) . 

7th Edition 

. mv 8 5 -10 -10 6 

. type fr 

.kiss 
#This is a translation of IOFSM from OPUS 
# inputs are 101 100 INIT S\\R MACK 
# outputs are WAIT MINIT MID SACX 1\WR. DLI 
# reset logic 
--1--
#wait for INIT to 
--1-- initO 
--0-- initO 
# wa i t f o r S\\R 
--00- init1 
--01- init1 
#Latch address 
--0-- init2 
# wa i t f o r S\\R t o 
--01- init4 
--00- init4 
# wait for conmand 

in itO 110000 
go away 
in itO 110000 
in it 1 110000 

in it 1 110000 
in i t2 110001 

in i t4 110100 
go away 

in i t4 110100 
iowa it 000000 
from :MFSM 

0000- iowa it iowa it 000000 
1000- iowait init1 110000 
01000 iowait readO 101000 
11000 iowait writeO 100010 
0 1 00 1 i owa i t rma c k 1 00000 
11 00 1 i owa i t v.ma c k 1 00000 
- - 0 1 - i owa i t in i t 2 11 0001 
#wait for MACK to fall (read operation) 
--0-0 rmack rmack 100000 
--0-1 rmack readO 101000 
#wait for MACK to fall (write operation0 
--0-0 ~ck v.mack 100000 
--0-1 ~ck writeO 100010 
#perform read operation 
--0-- readO read1 
--0-- read1 iowait 
#perform write operation 
- - 0- - wr i t e 0 i owa i t 
.end 

12/28/84 
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APPENDIX B 

Summary of Optimal Results for the PLA Test Set 

This table presents the results of Boolean minimization for the 145 PL~'s in the 

Berkeley PLA test suite. The cost function is assumed to be minimum numbe~ of terms 
I 

with only a secondary concern given to the number of literals. Each example i~ classified 
I 

as one of 3 types: 

type description 
indust example donated from actual chip designs 
math mathematical function 
random randomly generated example 

Each example also belongs to one of 5 categories. which measures the relative 

difficulty of the problem: 

class description 
trivial minimum solution consists of essential prime implicants 
noncyclic the covering problem contains no cyclic constraints 
cycli~s the covering problem contains cyclic constraints. 

and the covering problem has been solved 
cycli~us the covering problem contains cyclic constraints. 

and the covering problem as not been solved 
primes unable to enumerate all prime implicants 

These classifications were determined by using the exact minimization alg~rithms of 

Espresso-MY as well as the exact minimization algorithm of McBoole. The cla*sifications 

of cyclic-us and primes are dependent on the exact minimization algorithms Which were 

used. For example, although we know the minimum solution for Z9sym an~ ibm (by 

methods not involving the use of an exact minimization algorithm) these examp~s are still 

classified as cyclic-us and primes respectively because the exact minimization alg'fithm was 

unable to determine the minimum solution. I 

For each example. we first give the number of inputs. the number of outputs. and the 

number of terms in the initial representation of the function. If the number Jf terms is 
: 
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marked by*, then there is a don't-care set specified for the function (which is n~t counted 

in the initial number of terms). 

We then present the number of prime implicants (when known), the !humber of 

essential primes, and the minimum solution (when known). When the minimu~ solution 

is not known for the class cyclic-us a lower bound Cas determined by the covtring algo

rithm of Espresso-MV) and an upper bound (the best solution we"ve seen) are tiven. For 

the class primes. the lower bound is merely the number of essential prime implicants, and 

the upper bound is the best solution we've seen. For the examples exJOJO and exam the 

best results have been reported by the authors Prestol-11. and we have not seen or verified 

the results. 

This table also gives the results for Espresso-MV in both its normal mode ~Esp.) and 

its strong mode (Esp. (s) ). 
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in/out type class # # minimum Est- Esp. name terms primes solution (s) essen. 
alu1 1218 19 in dust trivial 780 19 19 1? 19 
bcd.div3 4/4 * 9 math trivial 13 9 9 

2t 
9 

clpl 11/5 20 in dust trivial 143 20 20 20 
co14 14/1 14 math trivial 14 14 14 1# 14 
max46 9/1 46 indust trivial 49 46 46 4! 

46 
newapla2 617 7 indust trivial 7 7 7 7 
new byte 5/8 8 in dust trivial 8 8 8 8 
newtag 8/1 8 in dust trivial 8 8 8 ~ 8 
ryy6 16/1 112 in dust trivial 112 112 112 11 112 
add6 12/7 1092 math noncyclic 8568 153 355 35' 355 
adr4 8/5 255 math noncyclic 397 35 75 75 75 
al2 16/47 103 in dust noncyclic 9179 16 66 6) 66 
alcorn 15/38 47 indust non cyclic 4657 16 40 4J 40 
alu2 10/8 * 87 in dust non cyclic 434 36 68 6 68 
alu3 10/8 * 68 in dust noncyclic 540 27 64 6 64 
apla 10/12 * 112 in dust noncyclic 201 0 25 2 25 
b11 8/31 * 74 indust noncyclic 44 22 27 27 27 
b2 16/17 110 in dust noncyclic 928 54 104 10di 104 
b7 8/31 * 74 indust noncyclic 44 22 27 2? 27 
b9 16/5 123 indust noncyclic 3002 48 119 119 119 
be a 26/46 * 301 in dust noncyclic 305 144 180 180 180 
bcb 26/39 * 299 in dust noncyclic 255 137 155 15, 155 
bed 26/38 * 243 indust noncyclic 172 100 117 1~t 117 
br1 12/8 34 indust noncyclic 29 17 19 19 
br2 12/8 35 indust non cyclic 27 9 13 13 13 
del 4/7 15 in dust noncyclic 22 3 9 

~~ 
9 

dc2 8/7 58 in dust non cyclic 173 18 39 39 
dk17 10/11 *57 in dust noncyclic 111 0 18 18 
ex7 16/5 123 in dust noncyclic 3002 48 119 119 119 
exep 30/63 * 149 in dust noncyclic 558 82 108 10$ 108 
exp 8/18 * 89 in dust non cyclic 238 30 56 59 56 
in1 16/17 110 in dust noncyclic 928 54 104 10~ 104 
in3 35/29 75 in dust non cyclic 1114 44 74 74 74 
in5 24/14 62 in dust non cyclic 1067 53 62 

~~ 
62 

in6 33/23 54 in dust non cyclic 6174 40 54 54 
in7 26/10 84 indust noncyclic 2112 31 54 5~ 54 
life 9/1 140 math noncyclic 224 56 84 8.jl 84 
luc 8/27 27 indust noncyclic 190 14 26 

it 
26 

m1 6/12 32 in dust noncyclic 59 6 19 19 
newapla 12110 17 in dust noncyclic 113 9 17 

H 
17 

newapla1 1217 10 in dust noncyclic 31 9 10 10 
newcond 1112 31 indust noncyclic 72 18 31 31 
newcpla2 7/10 19 in dust noncyclic 38 14 19 19 19 
newcwp 4/5 11 indust noncyclic 23 7 11 11 11 
newtpla 15/5 23 in dust noncyclic 40 16 23 2~ 23 

Table B.l. Optimum Results for the Berkeley PLA Test Set. 
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in/out terms type class # # minimum f:sp. Esp. name 
primes essen. solution (s) 

newtpla1 1012 4 indust noncyclic 6 3 4 4 4 
newtpla2 10/4 9 in dust noncyclic 23 4 9 ! 9 9 
newxcpla1 9/23 40 indust noncyclic 191 18 39 i 39 39 
p1 8/18 * 89 random noncyclic 287 25 54 '55 54 
p3 8/14 * 66 random noncyclic 185 22 39 39 39 
p82 5/14 24 in dust noncyclic 48 16 21 21 21 
prom1 9/40 502 in dust noncyclic 9326 182 472 4172 472 
radd 8/5 120 math noncyclic 397 35 75 i 75 75 
rckl 32/7 96 math noncyclic 302 6 32 i32 32 

I 

rd53 5/3 31 math noncyclic 51 21 31 131 31 
rd73 7/3 147 math noncyclic 211 106 127 f27 127 
rise 8/31 74 in dust noncyclic 46 22 28 i28 28 
sex 9/14 23 indust noncyclic 99 13 21 121 21 
sqn 7/3 84 indust noncyclic 75 23 38 ·38 38 
t2 17/16 * 128 indust noncyclic 233 25 52 153 53 
t3 12/8 148 in dust noncyclic 42 30 33 133 33 
t4 12/8 * 38 in dust noncyclic 174 0 16 lt6 16 
vg2 25/8 110 indust noncyclic 1188 100 110 10 110 
vtx1 27/6 110 indust noncyclic 1220 100 110 10 110 
xldn 27/6 112 in dust noncyclic 1220 100 110 10 110 
x9dn 27/7 120 in dust noncyclic 1272 110 120 20 120 
z4 7/4 127 math noncyclic 167 35 59 59 59 
Z5xpl 7/10 128 math eye lie-s 390 8 63 

r3 
64 

addm4 9/8 480 math cyclic-s 1122 24 189 00 192 
amd 14124 171 in dust cyclic-s 457 32 66 166 66 
b10 15/11 * 135 indust cyclic-s 938 51 100 100 100 
b12 15/9 431 indust cyclic-s 1490 2 41 42 41 
b3 32/20 * 234 indust eye lie-s 3056 123 210 lll 211 
bee 26/45 * 245 indust cyclic-s 237 119 137 t37 137 
bench 6/8 * 31 random cyclic-s 391 0 16 18 17 
chkn 29/7 153 in dust cyclic-s 671 86 140 l40 140 
cps 24/109 654 in dust cyclic-s 2487 51 157 163 159 
dekoder 417 * 10 indust cyclic-s 26 3 9 ' 9 9 
dist 8/5 255 math cyclic-s 401 23 120 h1 121 
dk27 919 * 20 in dust cyclic-s 82 0 10 :10 10 
dk48 15/17 * 42 in dust cyclic-s 157 0 21 1 22 22 

I 

exps 8/38 * 196 in dust cyclic-s 852 56 132 t34 133 
f51m 8/8 255 math cyclic-s 561 13 76 '77 76 
fout 6/10 * 61 random cyclic-s 436 2 40 !44 42 
gary 15/11 214 in dust cyclic-s 706 60 107 r 107 
inO 15/11 135 in dust cyclic-s 706 60 107 07 107 
in2 19/10 137 indust cyclic-s 666 85 134 36 134 
in4 32120 234 indust cyclic-s 3076 118 211 l12 212 
inc 7/9 * 34 indust cyclic-s 124 12 29 30 29 

Table B.l. Optimum Results for the Berkeley PLA Test Set. 
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in/out terms type class 
# # minimum lfP· Esp. 

name primes solution (s) essen. i 

intb 15/7 664 indust cyclic-s 6522 186 629 ~29 629 
18err 8/8 * 253 math cyclic-s 142 15 50 :51 51 
log8mod 8/5 46 math cyclic-s 105 13 38 38 38 
m181 15/9 430 math cyclic-s 1636 2 41 !42 41 
m2 8/16 96 indust cyclic-s 243 7 47 i47 47 
m3 8/16 128 indust cyclic-s 344 4 62 k>5 63 
m4 8/16 256 in dust cyclic-s 670 11 101 1k>7 104 
mark1 20/31 * 23 in dust cyclic-s 208 1 19 !19 19 
max128 7/24 128 indust cyclic-s 469 6 78 !82 79 
max512 9/6 512 indust cyclic-s 535 20 133 1142 137 
mlp4 8/8 225 math cyclic-s 606 12 121 1128 127 
mp2d 14/14 123 indust cyclic-s 469 13 30 31 31 
newcpla1 9/16 38 indust cyclic-s 170 22 38 38 38 
new ill 8/1 8 indust cyclic-s 11 5 8 8 8 
opa 17/69 342 in dust cyclic-s 477 22 77 79 79 
pope.rom 6/48 64 in dust cyclic-s 593 12 59 62 59 
root 8/5 255 math cyclic-s 152 9 57 '57 57 
sqr6 6/12 63 math cyclic-s 205 3 47 49 49 
sym10 10/1 837 math cyclic-s 3150 0 210 2l1o 210 
tms 8/16 30 in dust cyclic-s 162 13 30 30 30 
wim 4/7 * 10 in dust cyclic-s 25 3 9 9 9 
x6dn 39/5 121 indust cyclic-s 916 60 81 !81 81 
Z9sym 9/1 420 math cyclic-us 1680 0 84/84 185 84 
b4 33/23 *54 indust cyclic-us 6455 40 40/54 '54 54 
bcO 26/11 419 indust cyclic-us 6596 37 37/177 178 177 
bench1 919 * 285 random cyclic-us 5972 0 111/126 1:36 128 
ex5 8/63 256 in dust cyclic-us 2532 28 59/67 74 72 
exam 10/10 * 410 random cyclic-us 4955 0 52/59 ~7 66 
lin.rom 7/36 128 indust cyclic-us 1087 8 125/128 

*8 
128 

max1024 10/6 1024 in dust cyclic-us 1278 14 239/267 4 267 
prom2 9/21 287 in dust cyclic-us 2635 9 274/287 ii 287 
spla 16/46 * 2296 in dust cyclic-us 4972 33 33/251 260 
t1 21/23 796 indust cyclic-us 15135 7 7/102 2 102 
test1 8/10 * 209 random cyclic-us 2407 0 103/111 1~3 115 
test4 8/30 * 256 random cyclic-us 6139 0 0/104 1~2 104 
tial 14/8 640 math cyclic-us 7145 220 220/575 579 579 
accpla 50169 183 in dust primes ? 97 97/175 175 175 
ex1010 10/10 * 810 random primes ? 0 0/246 

~~ 
264 

ex4 128/28 620 indust primes ? 138 138/279 279 
ibm 48/17 173 indust primes ? 172 173/173 3 173 
jbp 36/57 166 indust primes ? 0 0/122 1~2 122 
mainpla 27/54 181 in dust primes ? 29 29/172 172 172 
misg 56/23 75 indust primes ? 3 3/69 f)9 69 

Table B.l. Optimum Results for the Berkeley PLA Test Set. 
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in/out terms type class # # minimum Esp.! Esp. 
name primes solution (s) essen. 

mish 94/43 91 indust primes ? 3 3/82 ~~ 82 
misj 35/14 48 in dust primes ? 13 13/35 35 
pdc 16/40 * 2406 indust primes ? 2 2/100 125 121 
shift 19/16 100 in dust primes ? 100 100/100 100 100 
signet 39/8 124 indust primes ? 104 104/119 119 119 
soar.pla 83/94 529 indust primes ? 2 2/352 352) 352 
test2 11/35 * 1999 random primes ? 0 0/995 110.5 
test3 10/35 * 1003 random primes ? 0 0/491 54l 491 
ti 47/72 241 in dust primes ? 46 46/213 211 213 
ts10 22/16 128 indust primes ? 128 128/128 128 128 
x2dn 82156 112 indust primes ? 2 2/104 104 104 
x7dn 66/15 622 indust primes ? 378 378/538 538 538 
xparc 41/73 551 indust primes ? 140 140/254 254 254 

Table B.l. Optimum Results for the Berkeley PLA Test Set. 
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